Flask server for running it all

This commit is contained in:
Hayk Martiros 2022-11-26 00:15:56 +00:00
parent 83f9a527e3
commit c17e428e45
2 changed files with 153 additions and 0 deletions

0
riffusion/__init__.py Normal file
View File

153
riffusion/server.py Normal file
View File

@ -0,0 +1,153 @@
"""
Inference server for the riffusion project.
"""
import base64
import dataclasses
import logging
import io
import json
from pathlib import Path
import time
import dacite
import flask
from flask_cors import CORS
import PIL
import torch
from .audio import wav_bytes_from_spectrogram_image
from .audio import mp3_bytes_from_wav_bytes
from .datatypes import InferenceInput
from .datatypes import InferenceOutput
from .riffusion_pipeline import RiffusionPipeline
# Flask app with CORS
app = flask.Flask(__name__)
CORS(app)
# Log at the INFO level to both stdout and disk
logging.basicConfig(level=logging.INFO)
logging.getLogger().addHandler(logging.FileHandler("server.log"))
# Global variable for the model pipeline
MODEL = None
# Where built-in seed images are stored
SEED_IMAGES_DIR = Path(Path(__file__).resolve().parent.parent, "seed_images")
def run_app(
*,
checkpoint: str,
host: str = "127.0.0.1",
port: int = 3000,
debug: bool = False,
):
"""
Run a flask API that serves the given riffusion model checkpoint.
"""
# Initialize the model
global MODEL
MODEL = load_model(checkpoint=checkpoint)
app.run(
debug=debug,
threaded=False,
host=host,
port=port,
)
def load_model(checkpoint: str):
"""
Load the riffusion model pipeline.
"""
assert torch.cuda.is_available()
model = RiffusionPipeline.from_pretrained(
checkpoint,
revision="fp16",
torch_dtype=torch.float16,
# Disable the NSFW filter, causes incorrect false positives
safety_checker=lambda images, **kwargs: (images, False),
)
model = model.to("cuda")
return model
@app.route("/run_inference/", methods=["POST"])
def run_inference():
"""
Execute the riffusion model as an API.
Inputs:
Serialized JSON of the InferenceInput dataclass
Returns:
Serialized JSON of the InferenceOutput dataclass
"""
start_time = time.time()
# Parse the payload as JSON
json_data = json.loads(flask.request.data)
# Log the request
logging.info(json_data)
# Parse an InferenceInput dataclass from the payload
try:
inputs = dacite.from_dict(InferenceInput, json_data)
except dacite.exceptions.WrongTypeError as exception:
logging.info(json_data)
return str(exception), 400
except dacite.exceptions.MissingValueError as exception:
logging.info(json_data)
return str(exception), 400
# Load the seed image by ID
init_image_path = Path(SEED_IMAGES_DIR, f"{inputs.seed_image_id}.png")
if not init_image_path.is_file:
return f"Invalid seed image: {inputs.seed_image_id}", 400
init_image = PIL.Image.open(str(init_image_path)).convert("RGB")
# Execute the model to get the spectrogram image
image = MODEL.riffuse(inputs, init_image=init_image)
# Reconstruct audio from the image
wav_bytes = wav_bytes_from_spectrogram_image(image)
mp3_bytes = mp3_bytes_from_wav_bytes(wav_bytes)
# Compute the output as base64 encoded strings
image_bytes = image_bytes_from_image(image, mode="PNG")
output = InferenceOutput(image=base64_encode(image_bytes), audio=base64_encode(mp3_bytes))
# Log the total time
logging.info(f"Request took {time.time() - start_time:.2f} s")
return flask.jsonify(dataclasses.asdict(output))
def image_bytes_from_image(image: PIL.Image, mode: str = "PNG") -> io.BytesIO:
"""
Convert a PIL image into bytes of the given image format.
"""
image_bytes = io.BytesIO()
image.save(image_bytes, mode)
image_bytes.seek(0)
return image_bytes
def base64_encode(buffer: io.BytesIO) -> str:
"""
Encode the given buffer as base64.
"""
return base64.encodebytes(buffer.getvalue()).decode("ascii")
if __name__ == "__main__":
import argh
argh.dispatch_command(run_app)