import typing as T import streamlit as st from riffusion.spectrogram_params import SpectrogramParams from riffusion.streamlit import util as streamlit_util def render_text_to_audio() -> None: """ Render audio from text. """ prompt = st.text_input("Prompt") negative_prompt = st.text_input("Negative prompt") seed = T.cast(int, st.sidebar.number_input("Seed", value=42)) num_inference_steps = T.cast(int, st.sidebar.number_input("Inference steps", value=50)) width = T.cast(int, st.sidebar.number_input("Width", value=512)) height = T.cast(int, st.sidebar.number_input("Height", value=512)) guidance = st.sidebar.number_input( "Guidance", value=7.0, help="How much the model listens to the text prompt" ) if not prompt: st.info("Enter a prompt") return device = streamlit_util.select_device(st.sidebar) image = streamlit_util.run_txt2img( prompt=prompt, num_inference_steps=num_inference_steps, guidance=guidance, negative_prompt=negative_prompt, seed=seed, width=width, height=height, device=device, ) st.image(image) # TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained params = SpectrogramParams( min_frequency=0, max_frequency=10000, ) audio_bytes = streamlit_util.audio_bytes_from_spectrogram_image( image=image, params=params, device=device, output_format="mp3", ) st.audio(audio_bytes) if __name__ == "__main__": render_text_to_audio()