255 lines
7.8 KiB
Python
255 lines
7.8 KiB
Python
import io
|
|
import typing as T
|
|
|
|
import numpy as np
|
|
import pydub
|
|
import streamlit as st
|
|
from PIL import Image
|
|
|
|
from riffusion.datatypes import InferenceInput
|
|
from riffusion.spectrogram_params import SpectrogramParams
|
|
from riffusion.streamlit import util as streamlit_util
|
|
from riffusion.streamlit.pages.interpolation import get_prompt_inputs, run_interpolation
|
|
|
|
|
|
def render_audio_to_audio_interpolate() -> None:
|
|
st.set_page_config(layout="wide", page_icon="🎸")
|
|
|
|
st.subheader(":wave: Audio to Audio Inteprolation")
|
|
st.write(
|
|
"""
|
|
Audio to audio with interpolation.
|
|
"""
|
|
)
|
|
|
|
with st.expander("Help", False):
|
|
st.write(
|
|
"""
|
|
TODO
|
|
"""
|
|
)
|
|
|
|
device = streamlit_util.select_device(st.sidebar)
|
|
|
|
num_inference_steps = T.cast(
|
|
int,
|
|
st.sidebar.number_input(
|
|
"Steps per sample", value=50, help="Number of denoising steps per model run"
|
|
),
|
|
)
|
|
|
|
audio_file = st.file_uploader(
|
|
"Upload audio",
|
|
type=["mp3", "m4a", "ogg", "wav", "flac", "webm"],
|
|
label_visibility="collapsed",
|
|
)
|
|
|
|
if not audio_file:
|
|
st.info("Upload audio to get started")
|
|
return
|
|
|
|
st.write("#### Original")
|
|
st.audio(audio_file)
|
|
|
|
segment = streamlit_util.load_audio_file(audio_file)
|
|
|
|
# TODO(hayk): Fix
|
|
segment = segment.set_frame_rate(44100)
|
|
st.write(f"Duration: {segment.duration_seconds:.2f}s, Sample Rate: {segment.frame_rate}Hz")
|
|
|
|
if "counter" not in st.session_state:
|
|
st.session_state.counter = 0
|
|
|
|
def increment_counter():
|
|
st.session_state.counter += 1
|
|
|
|
cols = st.columns(4)
|
|
start_time_s = cols[0].number_input(
|
|
"Start Time [s]",
|
|
min_value=0.0,
|
|
value=0.0,
|
|
)
|
|
duration_s = cols[1].number_input(
|
|
"Duration [s]",
|
|
min_value=0.0,
|
|
value=15.0,
|
|
)
|
|
clip_duration_s = cols[2].number_input(
|
|
"Clip Duration [s]",
|
|
min_value=3.0,
|
|
max_value=10.0,
|
|
value=5.0,
|
|
)
|
|
overlap_duration_s = cols[3].number_input(
|
|
"Overlap Duration [s]",
|
|
min_value=0.0,
|
|
max_value=10.0,
|
|
value=0.2,
|
|
)
|
|
|
|
duration_s = min(duration_s, segment.duration_seconds - start_time_s)
|
|
increment_s = clip_duration_s - overlap_duration_s
|
|
clip_start_times = start_time_s + np.arange(0, duration_s - clip_duration_s, increment_s)
|
|
st.write(
|
|
f"Slicing {len(clip_start_times)} clips of duration {clip_duration_s}s "
|
|
f"with overlap {overlap_duration_s}s."
|
|
)
|
|
|
|
with st.expander("Clip Times"):
|
|
st.dataframe(
|
|
{
|
|
"Start Time [s]": clip_start_times,
|
|
"End Time [s]": clip_start_times + clip_duration_s,
|
|
"Duration [s]": clip_duration_s,
|
|
}
|
|
)
|
|
|
|
with st.form(key="interpolation_form"):
|
|
left, right = st.columns(2)
|
|
|
|
with left:
|
|
st.write("##### Prompt A")
|
|
prompt_input_a = get_prompt_inputs(key="a")
|
|
|
|
with right:
|
|
st.write("##### Prompt B")
|
|
prompt_input_b = get_prompt_inputs(key="b")
|
|
|
|
submit_button = st.form_submit_button("Generate", type="primary")
|
|
|
|
show_clip_details = st.sidebar.checkbox("Show Clip Details", True)
|
|
show_difference = st.sidebar.checkbox("Show Difference", False)
|
|
|
|
clip_segments: T.List[pydub.AudioSegment] = []
|
|
for i, clip_start_time_s in enumerate(clip_start_times):
|
|
clip_start_time_ms = int(clip_start_time_s * 1000)
|
|
clip_duration_ms = int(clip_duration_s * 1000)
|
|
clip_segment = segment[clip_start_time_ms : clip_start_time_ms + clip_duration_ms]
|
|
|
|
# TODO(hayk): I don't think this is working properly
|
|
if i == len(clip_start_times) - 1:
|
|
silence_ms = clip_duration_ms - int(clip_segment.duration_seconds * 1000)
|
|
if silence_ms > 0:
|
|
clip_segment = clip_segment.append(pydub.AudioSegment.silent(duration=silence_ms))
|
|
|
|
clip_segments.append(clip_segment)
|
|
|
|
if not prompt_input_a.prompt or not prompt_input_b.prompt:
|
|
st.info("Enter both prompts to interpolate between them")
|
|
return
|
|
|
|
if not submit_button:
|
|
return
|
|
|
|
params = SpectrogramParams()
|
|
|
|
# TODO(hayk): Make not linspace
|
|
alphas = list(np.linspace(0, 1, len(clip_segments)))
|
|
alphas_str = ", ".join([f"{alpha:.2f}" for alpha in alphas])
|
|
st.write(f"**Alphas** : [{alphas_str}]")
|
|
|
|
result_images: T.List[Image.Image] = []
|
|
result_segments: T.List[pydub.AudioSegment] = []
|
|
for i, clip_segment in enumerate(clip_segments):
|
|
st.write(f"### Clip {i} at {clip_start_times[i]}s")
|
|
|
|
audio_bytes = io.BytesIO()
|
|
clip_segment.export(audio_bytes, format="wav")
|
|
|
|
init_image = streamlit_util.spectrogram_image_from_audio(
|
|
clip_segment,
|
|
params=params,
|
|
device=device,
|
|
)
|
|
|
|
# TODO(hayk): Roll this into spectrogram_image_from_audio?
|
|
# TODO(hayk): Scale something when computing audio
|
|
closest_width = int(np.ceil(init_image.width / 32) * 32)
|
|
closest_height = int(np.ceil(init_image.height / 32) * 32)
|
|
init_image_resized = init_image.resize((closest_width, closest_height), Image.BICUBIC)
|
|
|
|
# progress_callback = None
|
|
if show_clip_details:
|
|
left, right = st.columns(2)
|
|
|
|
left.write("##### Source Clip")
|
|
left.image(init_image, use_column_width=False)
|
|
left.audio(audio_bytes)
|
|
|
|
right.write("##### Riffed Clip")
|
|
empty_bin = right.empty()
|
|
with empty_bin.container():
|
|
st.info("Riffing...")
|
|
# progress = st.progress(0.0)
|
|
# progress_callback = progress.progress
|
|
|
|
inputs = InferenceInput(
|
|
alpha=float(alphas[i]),
|
|
num_inference_steps=num_inference_steps,
|
|
seed_image_id="og_beat",
|
|
start=prompt_input_a,
|
|
end=prompt_input_b,
|
|
)
|
|
|
|
image, audio_bytes = run_interpolation(
|
|
inputs=inputs,
|
|
init_image=init_image_resized,
|
|
device=device,
|
|
)
|
|
|
|
# Resize back to original size
|
|
image = image.resize(init_image.size, Image.BICUBIC)
|
|
|
|
result_images.append(image)
|
|
|
|
if show_clip_details:
|
|
empty_bin.empty()
|
|
right.image(image, use_column_width=False)
|
|
|
|
riffed_segment = streamlit_util.audio_segment_from_spectrogram_image(
|
|
image=image,
|
|
params=params,
|
|
device=device,
|
|
)
|
|
result_segments.append(riffed_segment)
|
|
|
|
if show_clip_details:
|
|
right.audio(audio_bytes)
|
|
|
|
if show_clip_details and show_difference:
|
|
diff_np = np.maximum(
|
|
0, np.asarray(init_image).astype(np.float32) - np.asarray(image).astype(np.float32)
|
|
)
|
|
diff_image = Image.fromarray(255 - diff_np.astype(np.uint8))
|
|
diff_segment = streamlit_util.audio_segment_from_spectrogram_image(
|
|
image=diff_image,
|
|
params=params,
|
|
device=device,
|
|
)
|
|
|
|
audio_bytes = io.BytesIO()
|
|
diff_segment.export(audio_bytes, format="wav")
|
|
st.audio(audio_bytes)
|
|
|
|
# Combine clips with a crossfade based on overlap
|
|
crossfade_ms = int(overlap_duration_s * 1000)
|
|
combined_segment = result_segments[0]
|
|
for segment in result_segments[1:]:
|
|
combined_segment = combined_segment.append(segment, crossfade=crossfade_ms)
|
|
|
|
audio_bytes = io.BytesIO()
|
|
combined_segment.export(audio_bytes, format="mp3")
|
|
st.write(f"#### Final Audio ({combined_segment.duration_seconds}s)")
|
|
st.audio(audio_bytes, format="audio/mp3")
|
|
|
|
|
|
@st.cache
|
|
def test(segment: pydub.AudioSegment, counter: int) -> int:
|
|
st.write("#### Trimmed")
|
|
st.write(segment.duration_seconds)
|
|
return counter
|
|
|
|
|
|
if __name__ == "__main__":
|
|
render_audio_to_audio_interpolate()
|