66 lines
2.0 KiB
Python
66 lines
2.0 KiB
Python
import numpy as np
|
|
import pydub
|
|
|
|
from riffusion.spectrogram_converter import SpectrogramConverter
|
|
from riffusion.spectrogram_params import SpectrogramParams
|
|
from riffusion.util import image_util
|
|
|
|
from .test_case import TestCase
|
|
|
|
|
|
class ImageUtilTest(TestCase):
|
|
"""
|
|
Test riffusion.util.image_util
|
|
"""
|
|
|
|
def test_spectrogram_to_image_round_trip(self) -> None:
|
|
audio_path = (
|
|
self.TEST_DATA_PATH
|
|
/ "tired_traveler"
|
|
/ "clips"
|
|
/ "clip_2_start_103694_ms_duration_5678_ms.wav"
|
|
)
|
|
|
|
# Load up the audio file
|
|
segment = pydub.AudioSegment.from_file(audio_path)
|
|
|
|
# Convert to mono
|
|
segment = segment.set_channels(1)
|
|
|
|
# Compute a spectrogram with default params
|
|
params = SpectrogramParams(sample_rate=segment.frame_rate)
|
|
converter = SpectrogramConverter(params=params, device=self.DEVICE)
|
|
spectrogram = converter.spectrogram_from_audio(segment)
|
|
|
|
# Compute the image from the spectrogram
|
|
image = image_util.image_from_spectrogram(
|
|
spectrogram=spectrogram,
|
|
power=params.power_for_image,
|
|
)
|
|
|
|
# Save the max value
|
|
max_value = np.max(spectrogram)
|
|
|
|
# Compute the spectrogram from the image
|
|
spectrogram_reversed = image_util.spectrogram_from_image(
|
|
image=image,
|
|
max_value=max_value,
|
|
power=params.power_for_image,
|
|
stereo=params.stereo,
|
|
)
|
|
|
|
# Check the shapes
|
|
self.assertEqual(spectrogram.shape, spectrogram_reversed.shape)
|
|
|
|
# Check the max values
|
|
self.assertEqual(np.max(spectrogram), np.max(spectrogram_reversed))
|
|
|
|
# Check the median values
|
|
self.assertTrue(
|
|
np.allclose(np.median(spectrogram), np.median(spectrogram_reversed), rtol=0.05)
|
|
)
|
|
|
|
# Make sure all values are somewhat similar, but allow for discretization error
|
|
# TODO(hayk): Investigate error more closely
|
|
self.assertTrue(np.allclose(spectrogram, spectrogram_reversed, rtol=0.15))
|