183 lines
4.5 KiB
Python
183 lines
4.5 KiB
Python
"""
|
|
Audio processing tools to convert between spectrogram images and waveforms.
|
|
"""
|
|
import io
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
import pydub
|
|
from scipy.io import wavfile
|
|
import torch
|
|
import torchaudio
|
|
|
|
|
|
def wav_bytes_from_spectrogram_image(image: Image.Image) -> io.BytesIO:
|
|
"""
|
|
Reconstruct a WAV audio clip from a spectrogram image.
|
|
"""
|
|
|
|
max_volume = 50
|
|
power_for_image = 0.25
|
|
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image)
|
|
|
|
sample_rate = 44100 # [Hz]
|
|
clip_duration_ms = 5000 # [ms]
|
|
|
|
bins_per_image = 512
|
|
n_mels = 512
|
|
|
|
# FFT parameters
|
|
window_duration_ms = 100 # [ms]
|
|
padded_duration_ms = 400 # [ms]
|
|
step_size_ms = 10 # [ms]
|
|
|
|
# Derived parameters
|
|
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate
|
|
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
|
|
hop_length = int(step_size_ms / 1000.0 * sample_rate)
|
|
win_length = int(window_duration_ms / 1000.0 * sample_rate)
|
|
|
|
waveform = waveform_from_spectrogram(
|
|
Sxx=Sxx,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
num_samples=num_samples,
|
|
sample_rate=sample_rate,
|
|
mel_scale=True,
|
|
n_mels=n_mels,
|
|
max_mel_iters=200,
|
|
num_griffin_lim_iters=32,
|
|
)
|
|
|
|
wav_bytes = io.BytesIO()
|
|
wavfile.write(wav_bytes, sample_rate, waveform.astype(np.int16))
|
|
wav_bytes.seek(0)
|
|
|
|
return wav_bytes
|
|
|
|
|
|
def spectrogram_from_image(
|
|
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25
|
|
) -> np.ndarray:
|
|
"""
|
|
Compute a spectrogram magnitude array from a spectrogram image.
|
|
|
|
TODO(hayk): Add image_from_spectrogram and call this out as the reverse.
|
|
"""
|
|
# Convert to a numpy array of floats
|
|
data = np.array(image).astype(np.float32)
|
|
|
|
# Flip Y take a single channel
|
|
data = data[::-1, :, 0]
|
|
|
|
# Invert
|
|
data = 255 - data
|
|
|
|
# Rescale to max volume
|
|
data = data * max_volume / 255
|
|
|
|
# Reverse the power curve
|
|
data = np.power(data, 1 / power_for_image)
|
|
|
|
return data
|
|
|
|
|
|
def spectrogram_from_waveform(
|
|
waveform: np.ndarray,
|
|
sample_rate: int,
|
|
n_fft: int,
|
|
hop_length: int,
|
|
win_length: int,
|
|
mel_scale: bool = True,
|
|
n_mels: int = 512,
|
|
) -> np.ndarray:
|
|
"""
|
|
Compute a spectrogram from a waveform.
|
|
"""
|
|
|
|
spectrogram_func = torchaudio.transforms.Spectrogram(
|
|
n_fft=n_fft,
|
|
power=None,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
)
|
|
|
|
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
|
|
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
|
|
|
|
Sxx_mag = np.abs(Sxx_complex)
|
|
|
|
if mel_scale:
|
|
mel_scaler = torchaudio.transforms.MelScale(
|
|
n_mels=n_mels,
|
|
sample_rate=sample_rate,
|
|
f_min=0,
|
|
f_max=10000,
|
|
n_stft=n_fft // 2 + 1,
|
|
norm=None,
|
|
mel_scale="htk",
|
|
)
|
|
|
|
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
|
|
|
|
return Sxx_mag
|
|
|
|
|
|
def waveform_from_spectrogram(
|
|
Sxx: np.ndarray,
|
|
n_fft: int,
|
|
hop_length: int,
|
|
win_length: int,
|
|
num_samples: int,
|
|
sample_rate: int,
|
|
mel_scale: bool = True,
|
|
n_mels: int = 512,
|
|
max_mel_iters: int = 200,
|
|
num_griffin_lim_iters: int = 32,
|
|
device: str = "cuda:0",
|
|
) -> np.ndarray:
|
|
"""
|
|
Reconstruct a waveform from a spectrogram.
|
|
|
|
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm
|
|
to approximate the phase.
|
|
"""
|
|
Sxx_torch = torch.from_numpy(Sxx).to(device)
|
|
|
|
# TODO(hayk): Make this a class that caches the two things
|
|
|
|
if mel_scale:
|
|
mel_inv_scaler = torchaudio.transforms.InverseMelScale(
|
|
n_mels=n_mels,
|
|
sample_rate=sample_rate,
|
|
f_min=0,
|
|
f_max=10000,
|
|
n_stft=n_fft // 2 + 1,
|
|
norm=None,
|
|
mel_scale="htk",
|
|
max_iter=max_mel_iters,
|
|
).to(device)
|
|
|
|
Sxx_torch = mel_inv_scaler(Sxx_torch)
|
|
|
|
griffin_lim = torchaudio.transforms.GriffinLim(
|
|
n_fft=n_fft,
|
|
win_length=win_length,
|
|
hop_length=hop_length,
|
|
power=1.0,
|
|
n_iter=num_griffin_lim_iters,
|
|
).to(device)
|
|
|
|
waveform = griffin_lim(Sxx_torch).cpu().numpy()
|
|
|
|
return waveform
|
|
|
|
|
|
def mp3_bytes_from_wav_bytes(wav_bytes: io.BytesIO) -> io.BytesIO:
|
|
mp3_bytes = io.BytesIO()
|
|
sound = pydub.AudioSegment.from_wav(wav_bytes)
|
|
sound.export(mp3_bytes, format="mp3")
|
|
mp3_bytes.seek(0)
|
|
return mp3_bytes
|