351 lines
13 KiB
Python
351 lines
13 KiB
Python
"""
|
|
Riffusion inference pipeline.
|
|
"""
|
|
|
|
import functools
|
|
import inspect
|
|
import typing as T
|
|
|
|
import numpy as np
|
|
import PIL
|
|
import torch
|
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
from diffusers.utils import logging
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from .datatypes import InferenceInput
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class RiffusionPipeline(DiffusionPipeline):
|
|
"""
|
|
Diffusers pipeline for doing a controlled img2img interpolation for audio generation.
|
|
|
|
# TODO(hayk): Document more
|
|
|
|
Part of this code was adapted from the non-img2img interpolation pipeline at:
|
|
|
|
https://github.com/huggingface/diffusers/blob/main/examples/community/interpolate_stable_diffusion.py
|
|
|
|
Check the documentation for DiffusionPipeline for full information.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: T.Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
@functools.lru_cache()
|
|
def embed_text(self, text):
|
|
"""
|
|
Takes in text and turns it into text embeddings.
|
|
"""
|
|
text_input = self.tokenizer(
|
|
text,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
with torch.no_grad():
|
|
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
|
return embed
|
|
|
|
@torch.autocast("cuda")
|
|
@torch.no_grad()
|
|
def riffuse(
|
|
self,
|
|
inputs: InferenceInput,
|
|
init_image: PIL.Image.Image,
|
|
mask_image: PIL.Image.Image = None,
|
|
) -> PIL.Image.Image:
|
|
"""
|
|
Runs inference using interpolation with both img2img and text conditioning.
|
|
|
|
Args:
|
|
inputs: Parameter dataclass
|
|
init_image: Image used for conditioning
|
|
mask_image: White pixels in the mask will be replaced by noise and therefore repainted,
|
|
while black pixels will be preserved. It will be converted to a single
|
|
channel (luminance) before use.
|
|
"""
|
|
alpha = inputs.alpha
|
|
start = inputs.start
|
|
end = inputs.end
|
|
|
|
guidance_scale = start.guidance * (1.0 - alpha) + end.guidance * alpha
|
|
generator_start = torch.Generator(device=self.device).manual_seed(start.seed)
|
|
generator_end = torch.Generator(device=self.device).manual_seed(end.seed)
|
|
|
|
# Text encodings
|
|
embed_start = self.embed_text(start.prompt)
|
|
embed_end = self.embed_text(end.prompt)
|
|
text_embedding = torch.lerp(embed_start, embed_end, alpha)
|
|
|
|
# Image latents
|
|
init_image = preprocess_image(init_image)
|
|
init_image_torch = init_image.to(device=self.device, dtype=embed_start.dtype)
|
|
init_latent_dist = self.vae.encode(init_image_torch).latent_dist
|
|
# TODO(hayk): Probably this seed should just be 0 always? Make it 100% symmetric. The
|
|
# result is so close no matter the seed that it doesn't really add variety.
|
|
generator = torch.Generator(device=self.device).manual_seed(start.seed)
|
|
init_latents = init_latent_dist.sample(generator=generator)
|
|
init_latents = 0.18215 * init_latents
|
|
|
|
# Prepare mask latent
|
|
if mask_image:
|
|
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
mask_image = preprocess_mask(mask_image, scale_factor=vae_scale_factor)
|
|
mask = mask_image.to(device=self.device, dtype=embed_start.dtype)
|
|
else:
|
|
mask = None
|
|
|
|
outputs = self.interpolate_img2img(
|
|
text_embeddings=text_embedding,
|
|
init_latents=init_latents,
|
|
mask=mask,
|
|
generator_a=generator_start,
|
|
generator_b=generator_end,
|
|
interpolate_alpha=alpha,
|
|
strength_a=start.denoising,
|
|
strength_b=end.denoising,
|
|
num_inference_steps=inputs.num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
)
|
|
|
|
return outputs["images"][0]
|
|
|
|
@torch.no_grad()
|
|
def interpolate_img2img(
|
|
self,
|
|
text_embeddings: torch.FloatTensor,
|
|
init_latents: torch.FloatTensor,
|
|
generator_a: torch.Generator,
|
|
generator_b: torch.Generator,
|
|
interpolate_alpha: float,
|
|
mask: T.Optional[torch.FloatTensor] = None,
|
|
strength_a: float = 0.8,
|
|
strength_b: float = 0.8,
|
|
num_inference_steps: T.Optional[int] = 50,
|
|
guidance_scale: T.Optional[float] = 7.5,
|
|
negative_prompt: T.Optional[T.Union[str, T.List[str]]] = None,
|
|
num_images_per_prompt: T.Optional[int] = 1,
|
|
eta: T.Optional[float] = 0.0,
|
|
output_type: T.Optional[str] = "pil",
|
|
**kwargs,
|
|
):
|
|
"""
|
|
TODO
|
|
"""
|
|
batch_size = text_embeddings.shape[0]
|
|
|
|
# set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
bs_embed, seq_len, _ = text_embeddings.shape
|
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
|
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError("The length of `negative_prompt` should be equal to batch_size.")
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# max_length = text_input_ids.shape[-1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
|
|
|
# duplicate unconditional embeddings for each generation per prompt
|
|
uncond_embeddings = uncond_embeddings.repeat_interleave(
|
|
batch_size * num_images_per_prompt, dim=0
|
|
)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
latents_dtype = text_embeddings.dtype
|
|
|
|
strength = (1 - interpolate_alpha) * strength_a + interpolate_alpha * strength_b
|
|
|
|
# get the original timestep using init_timestep
|
|
offset = self.scheduler.config.get("steps_offset", 0)
|
|
init_timestep = int(num_inference_steps * strength) + offset
|
|
init_timestep = min(init_timestep, num_inference_steps)
|
|
|
|
timesteps = self.scheduler.timesteps[-init_timestep]
|
|
timesteps = torch.tensor(
|
|
[timesteps] * batch_size * num_images_per_prompt, device=self.device
|
|
)
|
|
|
|
# add noise to latents using the timesteps
|
|
noise_a = torch.randn(
|
|
init_latents.shape, generator=generator_a, device=self.device, dtype=latents_dtype
|
|
)
|
|
noise_b = torch.randn(
|
|
init_latents.shape, generator=generator_b, device=self.device, dtype=latents_dtype
|
|
)
|
|
noise = slerp(interpolate_alpha, noise_a, noise_b)
|
|
init_latents_orig = init_latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
latents = init_latents.clone()
|
|
|
|
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
|
|
|
# Some schedulers like PNDM have timesteps as arrays
|
|
# It's more optimized to move all timesteps to correct device beforehand
|
|
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = (
|
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input, t, encoder_hidden_states=text_embeddings
|
|
).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
if mask is not None:
|
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
|
# import ipdb; ipdb.set_trace()
|
|
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
|
|
|
latents = 1.0 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
return dict(images=image, latents=latents, nsfw_content_detected=False)
|
|
|
|
|
|
def preprocess_image(image: PIL.Image.Image) -> torch.Tensor:
|
|
"""
|
|
Preprocess an image for the model.
|
|
"""
|
|
w, h = image.size
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return 2.0 * image - 1.0
|
|
|
|
|
|
def preprocess_mask(mask: PIL.Image.Image, scale_factor: int = 8) -> torch.Tensor:
|
|
"""
|
|
Preprocess a mask for the model.
|
|
"""
|
|
mask = mask.convert("L")
|
|
w, h = mask.size
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
mask = mask.resize(
|
|
(w // scale_factor, h // scale_factor), resample=PIL.Image.NEAREST
|
|
)
|
|
mask = np.array(mask).astype(np.float32) / 255.0
|
|
mask = np.tile(mask, (4, 1, 1))
|
|
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
|
mask = 1 - mask # repaint white, keep black
|
|
mask = torch.from_numpy(mask)
|
|
|
|
return mask
|
|
|
|
|
|
def slerp(t, v0, v1, dot_threshold=0.9995):
|
|
"""
|
|
Helper function to spherically interpolate two arrays v1 v2.
|
|
"""
|
|
|
|
if not isinstance(v0, np.ndarray):
|
|
inputs_are_torch = True
|
|
input_device = v0.device
|
|
v0 = v0.cpu().numpy()
|
|
v1 = v1.cpu().numpy()
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
if np.abs(dot) > dot_threshold:
|
|
v2 = (1 - t) * v0 + t * v1
|
|
else:
|
|
theta_0 = np.arccos(dot)
|
|
sin_theta_0 = np.sin(theta_0)
|
|
theta_t = theta_0 * t
|
|
sin_theta_t = np.sin(theta_t)
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = sin_theta_t / sin_theta_0
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
if inputs_are_torch:
|
|
v2 = torch.from_numpy(v2).to(input_device)
|
|
|
|
return v2
|