55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
# i found this online. it might check a pickle object for rce but need to verify
|
||
|
|
||
|
import builtins
|
||
|
import io
|
||
|
import pickle
|
||
|
import collections
|
||
|
import torch
|
||
|
import os
|
||
|
import numpy
|
||
|
import _codecs
|
||
|
|
||
|
def encode(*args):
|
||
|
out = _codecs.encode(*args)
|
||
|
print(f'encode({args}) = {out}')
|
||
|
return out
|
||
|
|
||
|
class RestrictedUnpickler(pickle.Unpickler):
|
||
|
def persistent_load(self, saved_id):
|
||
|
assert saved_id[0] == 'storage'
|
||
|
return torch.storage._TypedStorage()
|
||
|
|
||
|
def find_class(self, module, name):
|
||
|
print(f'find class {module} {name}')
|
||
|
if module == 'collections' and name == 'OrderedDict':
|
||
|
return getattr(collections, name)
|
||
|
if module == 'torch._utils' and name == '_rebuild_tensor_v2':
|
||
|
return torch._utils._rebuild_tensor_v2
|
||
|
if module == 'torch' and name in ['FloatStorage', 'HalfStorage']:
|
||
|
return torch.FloatStorage
|
||
|
if module == 'numpy.core.multiarray' and name == 'scalar':
|
||
|
return numpy.core.multiarray.scalar
|
||
|
if module == 'numpy' and name == 'dtype':
|
||
|
return numpy.dtype
|
||
|
if module == '_codecs' and name == 'encode':
|
||
|
return encode
|
||
|
# Forbid everything else.
|
||
|
raise pickle.UnpicklingError("global '%s/%s' is forbidden" %
|
||
|
(module, name))
|
||
|
|
||
|
def restricted_loads(s):
|
||
|
"""Helper function analogous to pickle.loads()."""
|
||
|
return RestrictedUnpickler(io.BytesIO(s)).load()
|
||
|
|
||
|
# To test that it catches this RCE:
|
||
|
# restricted_loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
|
||
|
|
||
|
# unzip model.ckpt archive/data.pkl
|
||
|
with open('archive/data.pkl', 'rb') as f: st = f.read()
|
||
|
d = restricted_loads(st)
|
||
|
print(dir(d))
|
||
|
print(d.keys())
|
||
|
print(d['callbacks'])
|