stable-diffusion-webui/extensions-builtin/Lora/networks.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

684 lines
26 KiB
Python
Raw Normal View History

2024-07-07 23:17:51 -06:00
from __future__ import annotations
2023-12-30 01:11:03 -07:00
import gradio as gr
import logging
import os
import re
import lora_patches
import network
import network_lora
import network_glora
import network_hada
2023-07-16 15:12:18 -06:00
import network_ia3
2023-07-16 15:29:07 -06:00
import network_lokr
import network_full
import network_norm
2023-10-18 00:35:50 -06:00
import network_oft
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
2023-10-14 03:14:56 -06:00
import modules.textual_inversion.textual_inversion as textual_inversion
from lora_logger import logger
module_types = [
network_lora.ModuleTypeLora(),
network_hada.ModuleTypeHada(),
2023-07-16 15:12:18 -06:00
network_ia3.ModuleTypeIa3(),
2023-07-16 15:29:07 -06:00
network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(),
network_glora.ModuleTypeGLora(),
2023-10-18 00:35:50 -06:00
network_oft.ModuleTypeOFT(),
]
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"norm1": "in_layers_0",
"norm2": "out_layers_0",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_conv_in(.*)"):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, r"lora_unet_conv_out(.*)"):
return f'diffusion_model_out_2{m[0]}'
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
if 'mlp_fc1' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return key
def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping = {}
if shared.sd_model.is_sdxl:
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
if not hasattr(embedder, 'wrapped'):
continue
for name, module in embedder.wrapped.named_modules():
network_name = f'{i}_{name.replace(".", "_")}'
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
2024-06-15 23:04:31 -06:00
cond_stage_model = getattr(shared.sd_model.cond_stage_model, 'wrapped', shared.sd_model.cond_stage_model)
for name, module in cond_stage_model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
sd_model.network_layer_mapping = network_layer_mapping
class BundledTIHash(str):
def __init__(self, hash_str):
self.hash = hash_str
def __str__(self):
return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
sd = sd_models.read_state_dict(network_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'network_layer_mapping'):
assign_network_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
matched_networks = {}
2023-10-09 08:52:09 -06:00
bundle_embeddings = {}
for key_network, weight in sd.items():
2023-12-08 13:19:29 -07:00
key_network_without_network_parts, _, network_part = key_network.partition(".")
2023-10-09 08:52:09 -06:00
if key_network_without_network_parts == "bundle_emb":
emb_name, vec_name = network_part.split(".", 1)
emb_dict = bundle_embeddings.get(emb_name, {})
if vec_name.split('.')[0] == 'string_to_param':
_, k2 = vec_name.split('.', 1)
emb_dict['string_to_param'] = {k2: weight}
else:
emb_dict[vec_name] = weight
2023-10-09 08:52:09 -06:00
bundle_embeddings[emb_name] = emb_dict
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
if sd_module is None and "lora_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
2023-07-25 07:18:10 -06:00
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# some SD1 Loras also have correct compvis keys
if sd_module is None:
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
2023-11-02 01:11:32 -06:00
# kohya_ss OFT module
2023-10-18 05:16:01 -06:00
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
2023-11-02 01:11:32 -06:00
# KohakuBlueLeaf OFT module
if sd_module is None and "oft_diag" in key:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
if key not in matched_networks:
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
matched_networks[key].w[network_part] = weight
for key, weights in matched_networks.items():
net_module = None
for nettype in module_types:
net_module = nettype.create_module(net, weights)
if net_module is not None:
break
if net_module is None:
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
net.modules[key] = net_module
embeddings = {}
for emb_name, data in bundle_embeddings.items():
2023-10-14 03:14:56 -06:00
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
embedding.loaded = None
embedding.shorthash = BundledTIHash(name)
embeddings[emb_name] = embedding
net.bundle_embeddings = embeddings
2023-10-09 08:52:09 -06:00
if keys_failed_to_match:
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
return net
2023-08-09 07:54:49 -06:00
def purge_networks_from_memory():
while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
name = next(iter(networks_in_memory))
networks_in_memory.pop(name, None)
devices.torch_gc()
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
2023-10-09 08:52:09 -06:00
emb_db = sd_hijack.model_hijack.embedding_db
already_loaded = {}
for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded:
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
loaded_networks.clear()
unavailable_networks = []
for name in names:
if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
unavailable_networks.append(name)
elif available_network_aliases.get(name) is None:
unavailable_networks.append(name)
if unavailable_networks:
update_available_networks_by_names(unavailable_networks)
2024-01-15 12:45:19 -07:00
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
2024-01-15 12:45:19 -07:00
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
2023-08-09 07:54:49 -06:00
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
net = already_loaded.get(name, None)
if network_on_disk is not None:
2023-08-09 07:54:49 -06:00
if net is None:
net = networks_in_memory.get(name)
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
try:
net = load_network(name, network_on_disk)
2023-08-09 07:54:49 -06:00
networks_in_memory.pop(name, None)
networks_in_memory[name] = net
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
net.mentioned_name = name
network_on_disk.read_hash()
if net is None:
failed_to_load_networks.append(name)
logging.info(f"Couldn't find network with name {name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
logger.warning(
f'Skip bundle embedding: "{emb_name}"'
' as it was already loaded from embeddings folder'
)
continue
2023-10-09 08:52:09 -06:00
embedding.loaded = False
2023-10-09 08:52:09 -06:00
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
embedding.loaded = True
2023-10-09 08:52:09 -06:00
emb_db.register_embedding(embedding, shared.sd_model)
else:
emb_db.skipped_embeddings[name] = embedding
if failed_to_load_networks:
2023-12-30 01:11:03 -07:00
lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
sd_hijack.model_hijack.comments.append(lora_not_found_message)
if shared.opts.lora_not_found_warning_console:
print(f'\n{lora_not_found_message}\n')
if shared.opts.lora_not_found_gradio_warning:
gr.Warning(lora_not_found_message)
2023-08-09 07:54:49 -06:00
purge_networks_from_memory()
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
bias_backup = getattr(self, "network_bias_backup", None)
if weights_backup is None and bias_backup is None:
return
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
if bias_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias.copy_(bias_backup)
else:
self.bias.copy_(bias_backup)
else:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias = None
else:
self.bias = None
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
2024-03-03 23:37:23 -07:00
If not, restores original weights from backup and alters weights according to networks.
"""
network_layer_name = getattr(self, 'network_layer_name', None)
if network_layer_name is None:
return
current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None)
2023-08-16 00:55:35 -06:00
if weights_backup is None and wanted_names != ():
if current_names != ():
raise RuntimeError("no backup weights found and current weights are not unchanged")
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.network_weights_backup = weights_backup
bias_backup = getattr(self, "network_bias_backup", None)
2024-05-16 09:39:01 -06:00
if bias_backup is None and wanted_names != ():
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
elif getattr(self, 'bias', None) is not None:
bias_backup = self.bias.to(devices.cpu, copy=True)
else:
bias_backup = None
2024-05-16 12:45:00 -06:00
# Unlike weight which always has value, some modules don't have bias.
# Only report if bias is not None and current bias are not unchanged.
if bias_backup is not None and current_names != ():
raise RuntimeError("no backup bias found and current bias are not unchanged")
self.network_bias_backup = bias_backup
if current_names != wanted_names:
network_restore_weights_from_backup(self)
for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
try:
with torch.no_grad():
if getattr(self, 'fp16_weight', None) is None:
weight = self.weight
bias = self.bias
else:
weight = self.fp16_weight.clone().to(self.weight.device)
bias = getattr(self, 'fp16_bias', None)
if bias is not None:
bias = bias.clone().to(self.bias.device)
updown, ex_bias = module.calc_updown(weight)
if len(weight.shape) == 4 and weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
2023-10-18 23:56:17 -06:00
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
else:
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
try:
with torch.no_grad():
# Send "real" orig_weight into MHA's lora module
qw, kw, vw = self.in_proj_weight.chunk(3, 0)
updown_q, _ = module_q.calc_updown(qw)
updown_k, _ = module_k.calc_updown(kw)
updown_v, _ = module_v.calc_updown(vw)
del qw, kw, vw
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
if ex_bias is not None:
if self.out_proj.bias is None:
self.out_proj.bias = torch.nn.Parameter(ex_bias)
else:
self.out_proj.bias += ex_bias
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
continue
if module is None:
continue
logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
self.network_current_names = wanted_names
def network_forward(org_module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(org_module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(org_module)
network_reset_cached_weight(org_module)
y = original_forward(org_module, input)
network_layer_name = getattr(org_module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
continue
y = module.forward(input, y)
return y
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
self.network_bias_backup = None
def network_Linear_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.Linear_forward)
network_apply_weights(self)
return originals.Linear_forward(self, input)
def network_Linear_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Linear_load_state_dict(self, *args, **kwargs)
def network_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.Conv2d_forward)
network_apply_weights(self)
return originals.Conv2d_forward(self, input)
def network_Conv2d_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
def network_GroupNorm_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.GroupNorm_forward)
network_apply_weights(self)
return originals.GroupNorm_forward(self, input)
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
def network_LayerNorm_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.LayerNorm_forward)
network_apply_weights(self)
return originals.LayerNorm_forward(self, input)
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
def network_MultiheadAttention_forward(self, *args, **kwargs):
network_apply_weights(self)
return originals.MultiheadAttention_forward(self, *args, **kwargs)
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
def process_network_files(names: list[str] | None = None):
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
# if names is provided, only load networks with names in the list
if names and name not in names:
continue
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
continue
available_networks[name] = entry
if entry.alias in available_network_aliases:
forbidden_network_aliases[entry.alias.lower()] = 1
available_network_aliases[name] = entry
available_network_aliases[entry.alias] = entry
def update_available_networks_by_names(names: list[str]):
process_network_files(names)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
process_network_files()
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_network_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
originals: lora_patches.LoraPatches = None
extra_network_lora = None
available_networks = {}
available_network_aliases = {}
loaded_networks = []
2023-10-09 08:52:09 -06:00
loaded_bundle_embeddings = {}
2023-08-09 07:54:49 -06:00
networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
list_available_networks()