2023-12-25 14:01:02 -07:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
from functools import cached_property
|
|
|
|
from typing import TYPE_CHECKING, Callable
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from modules import devices, errors, face_restoration, shared
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2023-12-30 08:45:26 -07:00
|
|
|
def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
|
|
|
|
"""Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
|
|
|
|
assert img.shape[2] == 3, "image must be RGB"
|
|
|
|
if img.dtype == "float64":
|
|
|
|
img = img.astype("float32")
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
return torch.from_numpy(img.transpose(2, 0, 1)).float()
|
|
|
|
|
|
|
|
|
|
|
|
def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
|
|
|
|
"""
|
|
|
|
Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
|
|
|
|
"""
|
|
|
|
tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
|
|
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
|
|
|
|
assert tensor.dim() == 3, "tensor must be RGB"
|
|
|
|
img_np = tensor.numpy().transpose(1, 2, 0)
|
|
|
|
if img_np.shape[2] == 1: # gray image, no RGB/BGR required
|
|
|
|
return np.squeeze(img_np, axis=2)
|
|
|
|
return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
2023-12-25 14:01:02 -07:00
|
|
|
def create_face_helper(device) -> FaceRestoreHelper:
|
|
|
|
from facexlib.detection import retinaface
|
|
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
|
|
if hasattr(retinaface, 'device'):
|
|
|
|
retinaface.device = device
|
|
|
|
return FaceRestoreHelper(
|
|
|
|
upscale_factor=1,
|
|
|
|
face_size=512,
|
|
|
|
crop_ratio=(1, 1),
|
|
|
|
det_model='retinaface_resnet50',
|
|
|
|
save_ext='png',
|
|
|
|
use_parse=True,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def restore_with_face_helper(
|
|
|
|
np_image: np.ndarray,
|
|
|
|
face_helper: FaceRestoreHelper,
|
2023-12-30 08:41:19 -07:00
|
|
|
restore_face: Callable[[torch.Tensor], torch.Tensor],
|
2023-12-25 14:01:02 -07:00
|
|
|
) -> np.ndarray:
|
|
|
|
"""
|
|
|
|
Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image.
|
|
|
|
|
|
|
|
`restore_face` should take a cropped face image and return a restored face image.
|
|
|
|
"""
|
|
|
|
from torchvision.transforms.functional import normalize
|
|
|
|
np_image = np_image[:, :, ::-1]
|
|
|
|
original_resolution = np_image.shape[0:2]
|
|
|
|
|
|
|
|
try:
|
|
|
|
logger.debug("Detecting faces...")
|
|
|
|
face_helper.clean_all()
|
|
|
|
face_helper.read_image(np_image)
|
|
|
|
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
|
|
|
face_helper.align_warp_face()
|
|
|
|
logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
|
|
|
|
for cropped_face in face_helper.cropped_faces:
|
2023-12-30 08:45:26 -07:00
|
|
|
cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
|
2023-12-25 14:01:02 -07:00
|
|
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
|
|
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
|
|
|
|
|
|
|
|
try:
|
|
|
|
with torch.no_grad():
|
2023-12-30 08:45:26 -07:00
|
|
|
cropped_face_t = restore_face(cropped_face_t)
|
2023-12-25 14:01:02 -07:00
|
|
|
devices.torch_gc()
|
|
|
|
except Exception:
|
|
|
|
errors.report('Failed face-restoration inference', exc_info=True)
|
|
|
|
|
2023-12-30 08:45:26 -07:00
|
|
|
restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
|
|
|
|
restored_face = (restored_face * 255.0).astype('uint8')
|
2023-12-25 14:01:02 -07:00
|
|
|
face_helper.add_restored_face(restored_face)
|
|
|
|
|
|
|
|
logger.debug("Merging restored faces into image")
|
|
|
|
face_helper.get_inverse_affine(None)
|
|
|
|
img = face_helper.paste_faces_to_input_image()
|
|
|
|
img = img[:, :, ::-1]
|
|
|
|
if original_resolution != img.shape[0:2]:
|
|
|
|
img = cv2.resize(
|
|
|
|
img,
|
|
|
|
(0, 0),
|
|
|
|
fx=original_resolution[1] / img.shape[1],
|
|
|
|
fy=original_resolution[0] / img.shape[0],
|
|
|
|
interpolation=cv2.INTER_LINEAR,
|
|
|
|
)
|
|
|
|
logger.debug("Face restoration complete")
|
|
|
|
finally:
|
|
|
|
face_helper.clean_all()
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
class CommonFaceRestoration(face_restoration.FaceRestoration):
|
|
|
|
net: torch.Module | None
|
|
|
|
model_url: str
|
|
|
|
model_download_name: str
|
|
|
|
|
|
|
|
def __init__(self, model_path: str):
|
|
|
|
super().__init__()
|
|
|
|
self.net = None
|
|
|
|
self.model_path = model_path
|
|
|
|
os.makedirs(model_path, exist_ok=True)
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
def face_helper(self) -> FaceRestoreHelper:
|
|
|
|
return create_face_helper(self.get_device())
|
|
|
|
|
|
|
|
def send_model_to(self, device):
|
|
|
|
if self.net:
|
|
|
|
logger.debug("Sending %s to %s", self.net, device)
|
|
|
|
self.net.to(device)
|
|
|
|
if self.face_helper:
|
|
|
|
logger.debug("Sending face helper to %s", device)
|
|
|
|
self.face_helper.face_det.to(device)
|
|
|
|
self.face_helper.face_parse.to(device)
|
|
|
|
|
|
|
|
def get_device(self):
|
|
|
|
raise NotImplementedError("get_device must be implemented by subclasses")
|
|
|
|
|
|
|
|
def load_net(self) -> torch.Module:
|
|
|
|
raise NotImplementedError("load_net must be implemented by subclasses")
|
|
|
|
|
|
|
|
def restore_with_helper(
|
|
|
|
self,
|
|
|
|
np_image: np.ndarray,
|
2023-12-30 08:41:19 -07:00
|
|
|
restore_face: Callable[[torch.Tensor], torch.Tensor],
|
2023-12-25 14:01:02 -07:00
|
|
|
) -> np.ndarray:
|
|
|
|
try:
|
|
|
|
if self.net is None:
|
|
|
|
self.net = self.load_net()
|
|
|
|
except Exception:
|
|
|
|
logger.warning("Unable to load face-restoration model", exc_info=True)
|
|
|
|
return np_image
|
|
|
|
|
|
|
|
try:
|
|
|
|
self.send_model_to(self.get_device())
|
|
|
|
return restore_with_face_helper(np_image, self.face_helper, restore_face)
|
|
|
|
finally:
|
|
|
|
if shared.opts.face_restoration_unload:
|
|
|
|
self.send_model_to(devices.cpu)
|
|
|
|
|
|
|
|
|
|
|
|
def patch_facexlib(dirname: str) -> None:
|
|
|
|
import facexlib.detection
|
|
|
|
import facexlib.parsing
|
|
|
|
|
|
|
|
det_facex_load_file_from_url = facexlib.detection.load_file_from_url
|
|
|
|
par_facex_load_file_from_url = facexlib.parsing.load_file_from_url
|
|
|
|
|
|
|
|
def update_kwargs(kwargs):
|
|
|
|
return dict(kwargs, save_dir=dirname, model_dir=None)
|
|
|
|
|
|
|
|
def facex_load_file_from_url(**kwargs):
|
|
|
|
return det_facex_load_file_from_url(**update_kwargs(kwargs))
|
|
|
|
|
|
|
|
def facex_load_file_from_url2(**kwargs):
|
|
|
|
return par_facex_load_file_from_url(**update_kwargs(kwargs))
|
|
|
|
|
|
|
|
facexlib.detection.load_file_from_url = facex_load_file_from_url
|
|
|
|
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
|