2022-09-11 02:31:16 -06:00
|
|
|
import numpy as np
|
|
|
|
from PIL import Image
|
|
|
|
|
2022-09-11 14:24:24 -06:00
|
|
|
from modules import processing, shared, images, devices
|
2022-09-11 02:31:16 -06:00
|
|
|
from modules.shared import opts
|
|
|
|
import modules.gfpgan_model
|
|
|
|
from modules.ui import plaintext_to_html
|
|
|
|
import modules.codeformer_model
|
|
|
|
|
|
|
|
cached_images = {}
|
|
|
|
|
|
|
|
|
|
|
|
def run_extras(image, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
2022-09-11 14:24:24 -06:00
|
|
|
devices.torch_gc()
|
2022-09-11 02:31:16 -06:00
|
|
|
|
2022-09-12 09:59:53 -06:00
|
|
|
existing_pnginfo = image.info or {}
|
|
|
|
|
2022-09-11 02:31:16 -06:00
|
|
|
image = image.convert("RGB")
|
|
|
|
info = ""
|
|
|
|
|
|
|
|
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
|
|
|
|
|
|
|
if gfpgan_visibility > 0:
|
|
|
|
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
|
|
|
res = Image.fromarray(restored_img)
|
|
|
|
|
|
|
|
if gfpgan_visibility < 1.0:
|
|
|
|
res = Image.blend(image, res, gfpgan_visibility)
|
|
|
|
|
|
|
|
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
|
|
|
image = res
|
|
|
|
|
|
|
|
if codeformer_visibility > 0:
|
|
|
|
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
|
|
|
res = Image.fromarray(restored_img)
|
|
|
|
|
|
|
|
if codeformer_visibility < 1.0:
|
|
|
|
res = Image.blend(image, res, codeformer_visibility)
|
|
|
|
|
|
|
|
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility)}\n"
|
|
|
|
image = res
|
|
|
|
|
|
|
|
if upscaling_resize != 1.0:
|
|
|
|
def upscale(image, scaler_index, resize):
|
|
|
|
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
|
|
|
pixels = tuple(np.array(small).flatten().tolist())
|
|
|
|
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
|
|
|
|
|
|
|
|
c = cached_images.get(key)
|
|
|
|
if c is None:
|
|
|
|
upscaler = shared.sd_upscalers[scaler_index]
|
|
|
|
c = upscaler.upscale(image, image.width * resize, image.height * resize)
|
|
|
|
cached_images[key] = c
|
|
|
|
|
|
|
|
return c
|
|
|
|
|
|
|
|
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
|
|
|
res = upscale(image, extras_upscaler_1, upscaling_resize)
|
|
|
|
|
|
|
|
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
|
|
|
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
|
|
|
|
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
|
|
|
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
|
|
|
|
|
|
|
image = res
|
|
|
|
|
|
|
|
while len(cached_images) > 2:
|
|
|
|
del cached_images[next(iter(cached_images.keys()))]
|
|
|
|
|
2022-09-12 09:59:53 -06:00
|
|
|
images.save_image(image, outpath, "", None, info=info, extension=opts.samples_format, short_filename=True, no_prompt=True, pnginfo_section_name="extras", existing_info=existing_pnginfo)
|
2022-09-11 02:31:16 -06:00
|
|
|
|
|
|
|
return image, plaintext_to_html(info), ''
|
|
|
|
|
|
|
|
|
|
|
|
def run_pnginfo(image):
|
|
|
|
info = ''
|
|
|
|
for key, text in image.info.items():
|
|
|
|
info += f"""
|
|
|
|
<div>
|
|
|
|
<p><b>{plaintext_to_html(str(key))}</b></p>
|
|
|
|
<p>{plaintext_to_html(str(text))}</p>
|
|
|
|
</div>
|
|
|
|
""".strip()+"\n"
|
|
|
|
|
|
|
|
if len(info) == 0:
|
|
|
|
message = "Nothing found in the image."
|
|
|
|
info = f"<div><p>{message}<p></div>"
|
|
|
|
|
|
|
|
return '', '', info
|