2022-12-09 23:14:30 -07:00
|
|
|
import torch
|
2023-01-24 21:51:45 -07:00
|
|
|
from packaging import version
|
2024-05-17 10:12:57 -06:00
|
|
|
from einops import repeat
|
|
|
|
import math
|
2023-01-24 21:51:45 -07:00
|
|
|
|
|
|
|
from modules import devices
|
|
|
|
from modules.sd_hijack_utils import CondFunc
|
2022-12-09 23:14:30 -07:00
|
|
|
|
|
|
|
|
|
|
|
class TorchHijackForUnet:
|
|
|
|
"""
|
|
|
|
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
|
2022-12-14 19:01:32 -07:00
|
|
|
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
|
2022-12-09 23:14:30 -07:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __getattr__(self, item):
|
|
|
|
if item == 'cat':
|
|
|
|
return self.cat
|
|
|
|
|
|
|
|
if hasattr(torch, item):
|
|
|
|
return getattr(torch, item)
|
|
|
|
|
2023-05-09 13:17:58 -06:00
|
|
|
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
|
2022-12-09 23:14:30 -07:00
|
|
|
|
|
|
|
def cat(self, tensors, *args, **kwargs):
|
|
|
|
if len(tensors) == 2:
|
|
|
|
a, b = tensors
|
|
|
|
if a.shape[-2:] != b.shape[-2:]:
|
|
|
|
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
|
|
|
|
|
|
|
|
tensors = (a, b)
|
|
|
|
|
|
|
|
return torch.cat(tensors, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
th = TorchHijackForUnet()
|
2023-01-24 21:51:45 -07:00
|
|
|
|
|
|
|
|
|
|
|
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
|
|
|
|
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
2024-05-16 17:50:06 -06:00
|
|
|
"""Always make sure inputs to unet are in correct dtype."""
|
2023-01-25 10:11:01 -07:00
|
|
|
if isinstance(cond, dict):
|
|
|
|
for y in cond.keys():
|
2023-07-17 21:39:38 -06:00
|
|
|
if isinstance(cond[y], list):
|
|
|
|
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
|
|
|
|
else:
|
|
|
|
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
|
2023-01-25 10:11:01 -07:00
|
|
|
|
2023-01-24 21:51:45 -07:00
|
|
|
with devices.autocast():
|
2024-05-16 17:50:06 -06:00
|
|
|
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
|
|
|
|
if devices.unet_needs_upcast:
|
|
|
|
return result.float()
|
|
|
|
else:
|
|
|
|
return result
|
2023-01-24 21:51:45 -07:00
|
|
|
|
2023-02-06 22:05:54 -07:00
|
|
|
|
2024-05-17 10:12:57 -06:00
|
|
|
# Monkey patch to create timestep embed tensor on device, avoiding a block.
|
|
|
|
def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
|
|
|
|
"""
|
|
|
|
Create sinusoidal timestep embeddings.
|
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
|
|
|
These may be fractional.
|
|
|
|
:param dim: the dimension of the output.
|
|
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
|
|
:return: an [N x dim] Tensor of positional embeddings.
|
|
|
|
"""
|
|
|
|
if not repeat_only:
|
|
|
|
half = dim // 2
|
|
|
|
freqs = torch.exp(
|
|
|
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
|
|
|
)
|
|
|
|
args = timesteps[:, None].float() * freqs[None]
|
|
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
|
|
if dim % 2:
|
|
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
|
|
else:
|
|
|
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
|
2024-05-17 11:14:26 -06:00
|
|
|
# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
|
|
|
|
# Prevents a lot of unnecessary aten::copy_ calls
|
|
|
|
def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
|
|
|
|
# note: if no context is given, cross-attention defaults to self-attention
|
|
|
|
if not isinstance(context, list):
|
|
|
|
context = [context]
|
|
|
|
b, c, h, w = x.shape
|
|
|
|
x_in = x
|
|
|
|
x = self.norm(x)
|
|
|
|
if not self.use_linear:
|
|
|
|
x = self.proj_in(x)
|
|
|
|
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
|
|
|
|
if self.use_linear:
|
|
|
|
x = self.proj_in(x)
|
|
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
|
|
x = block(x, context=context[i])
|
|
|
|
if self.use_linear:
|
|
|
|
x = self.proj_out(x)
|
|
|
|
x = x.view(b, h, w, c).permute(0, 3, 1, 2)
|
|
|
|
if not self.use_linear:
|
|
|
|
x = self.proj_out(x)
|
|
|
|
return x + x_in
|
|
|
|
|
|
|
|
|
2023-01-24 21:51:45 -07:00
|
|
|
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
torch.nn.GELU.__init__(self, *args, **kwargs)
|
|
|
|
def forward(self, x):
|
|
|
|
if devices.unet_needs_upcast:
|
|
|
|
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
|
|
|
|
else:
|
|
|
|
return torch.nn.GELU.forward(self, x)
|
|
|
|
|
2023-02-06 22:05:54 -07:00
|
|
|
|
|
|
|
ddpm_edit_hijack = None
|
|
|
|
def hijack_ddpm_edit():
|
|
|
|
global ddpm_edit_hijack
|
|
|
|
if not ddpm_edit_hijack:
|
|
|
|
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
|
|
|
|
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
|
2024-05-16 17:50:06 -06:00
|
|
|
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
|
2023-02-06 22:05:54 -07:00
|
|
|
|
|
|
|
|
2023-01-24 21:51:45 -07:00
|
|
|
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
|
|
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
2024-06-08 01:35:09 -06:00
|
|
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
|
|
|
|
CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
|
2023-01-27 08:19:43 -07:00
|
|
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
2024-05-16 17:50:06 -06:00
|
|
|
|
2023-03-24 06:25:42 -06:00
|
|
|
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
|
2023-01-24 21:51:45 -07:00
|
|
|
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
|
|
|
|
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
|
|
|
|
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
|
2023-01-27 08:19:43 -07:00
|
|
|
|
|
|
|
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
|
|
|
|
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
|
|
|
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
|
|
|
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
|
|
|
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
|
2023-07-17 21:39:38 -06:00
|
|
|
|
2024-05-16 17:50:06 -06:00
|
|
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
|
|
|
|
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
|
|
|
|
|
|
|
|
|
|
|
|
def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
|
|
|
|
if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
|
|
|
|
dtype = torch.float32
|
|
|
|
else:
|
|
|
|
dtype = devices.dtype_unet
|
|
|
|
return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
|
|
|
|
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
|