2023-05-13 22:42:44 -06:00
|
|
|
"""
|
|
|
|
Tiny AutoEncoder for Stable Diffusion
|
|
|
|
(DNN for encoding / decoding SD's latent space)
|
|
|
|
|
|
|
|
https://github.com/madebyollin/taesd
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from modules import devices, paths_internal
|
|
|
|
|
|
|
|
sd_vae_taesd = None
|
|
|
|
|
|
|
|
|
|
|
|
def conv(n_in, n_out, **kwargs):
|
|
|
|
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class Clamp(nn.Module):
|
|
|
|
@staticmethod
|
|
|
|
def forward(x):
|
|
|
|
return torch.tanh(x / 3) * 3
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, n_in, n_out):
|
|
|
|
super().__init__()
|
|
|
|
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
|
|
|
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
|
|
|
self.fuse = nn.ReLU()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.fuse(self.conv(x) + self.skip(x))
|
|
|
|
|
|
|
|
|
|
|
|
def decoder():
|
|
|
|
return nn.Sequential(
|
|
|
|
Clamp(), conv(4, 64), nn.ReLU(),
|
|
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
|
Block(64, 64), conv(64, 3),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class TAESD(nn.Module):
|
2023-05-17 03:39:07 -06:00
|
|
|
latent_magnitude = 3
|
2023-05-13 22:42:44 -06:00
|
|
|
latent_shift = 0.5
|
|
|
|
|
|
|
|
def __init__(self, decoder_path="taesd_decoder.pth"):
|
|
|
|
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
|
|
|
super().__init__()
|
|
|
|
self.decoder = decoder()
|
|
|
|
self.decoder.load_state_dict(
|
|
|
|
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def unscale_latents(x):
|
|
|
|
"""[0, 1] -> raw latents"""
|
|
|
|
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
|
|
|
|
|
|
|
|
2023-05-17 00:24:01 -06:00
|
|
|
def download_model(model_path):
|
|
|
|
model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
|
|
|
|
|
|
|
|
if not os.path.exists(model_path):
|
|
|
|
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
|
|
|
|
|
|
|
print(f'Downloading TAESD decoder to: {model_path}')
|
|
|
|
torch.hub.download_url_to_file(model_url, model_path)
|
|
|
|
|
|
|
|
|
|
|
|
def model():
|
2023-05-13 22:42:44 -06:00
|
|
|
global sd_vae_taesd
|
|
|
|
|
|
|
|
if sd_vae_taesd is None:
|
2023-05-17 00:24:01 -06:00
|
|
|
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth")
|
|
|
|
download_model(model_path)
|
|
|
|
|
2023-05-13 22:42:44 -06:00
|
|
|
if os.path.exists(model_path):
|
|
|
|
sd_vae_taesd = TAESD(model_path)
|
|
|
|
sd_vae_taesd.eval()
|
|
|
|
sd_vae_taesd.to(devices.device, devices.dtype)
|
|
|
|
else:
|
2023-05-17 00:24:01 -06:00
|
|
|
raise FileNotFoundError('TAESD model not found')
|
2023-05-13 22:42:44 -06:00
|
|
|
|
|
|
|
return sd_vae_taesd.decoder
|