148 lines
6.3 KiB
Python
148 lines
6.3 KiB
Python
|
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
|
||
|
# where the license is as follows:
|
||
|
#
|
||
|
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||
|
# OR OTHER DEALINGS IN THE SOFTWARE./
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import numpy as np
|
||
|
from einops import rearrange
|
||
|
|
||
|
|
||
|
class VectorQuantizer2(nn.Module):
|
||
|
"""
|
||
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||
|
"""
|
||
|
|
||
|
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||
|
# backwards compatibility we use the buggy version by default, but you can
|
||
|
# specify legacy=False to fix it.
|
||
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
||
|
sane_index_shape=False, legacy=True):
|
||
|
super().__init__()
|
||
|
self.n_e = n_e
|
||
|
self.e_dim = e_dim
|
||
|
self.beta = beta
|
||
|
self.legacy = legacy
|
||
|
|
||
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||
|
|
||
|
self.remap = remap
|
||
|
if self.remap is not None:
|
||
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||
|
self.re_embed = self.used.shape[0]
|
||
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||
|
if self.unknown_index == "extra":
|
||
|
self.unknown_index = self.re_embed
|
||
|
self.re_embed = self.re_embed + 1
|
||
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||
|
f"Using {self.unknown_index} for unknown indices.")
|
||
|
else:
|
||
|
self.re_embed = n_e
|
||
|
|
||
|
self.sane_index_shape = sane_index_shape
|
||
|
|
||
|
def remap_to_used(self, inds):
|
||
|
ishape = inds.shape
|
||
|
assert len(ishape) > 1
|
||
|
inds = inds.reshape(ishape[0], -1)
|
||
|
used = self.used.to(inds)
|
||
|
match = (inds[:, :, None] == used[None, None, ...]).long()
|
||
|
new = match.argmax(-1)
|
||
|
unknown = match.sum(2) < 1
|
||
|
if self.unknown_index == "random":
|
||
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
||
|
else:
|
||
|
new[unknown] = self.unknown_index
|
||
|
return new.reshape(ishape)
|
||
|
|
||
|
def unmap_to_all(self, inds):
|
||
|
ishape = inds.shape
|
||
|
assert len(ishape) > 1
|
||
|
inds = inds.reshape(ishape[0], -1)
|
||
|
used = self.used.to(inds)
|
||
|
if self.re_embed > self.used.shape[0]: # extra token
|
||
|
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
||
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
||
|
return back.reshape(ishape)
|
||
|
|
||
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
||
|
assert rescale_logits is False, "Only for interface compatible with Gumbel"
|
||
|
assert return_logits is False, "Only for interface compatible with Gumbel"
|
||
|
# reshape z -> (batch, height, width, channel) and flatten
|
||
|
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
||
|
z_flattened = z.view(-1, self.e_dim)
|
||
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||
|
|
||
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
|
||
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
||
|
|
||
|
min_encoding_indices = torch.argmin(d, dim=1)
|
||
|
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||
|
perplexity = None
|
||
|
min_encodings = None
|
||
|
|
||
|
# compute loss for embedding
|
||
|
if not self.legacy:
|
||
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
|
||
|
torch.mean((z_q - z.detach()) ** 2)
|
||
|
else:
|
||
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
|
||
|
torch.mean((z_q - z.detach()) ** 2)
|
||
|
|
||
|
# preserve gradients
|
||
|
z_q = z + (z_q - z).detach()
|
||
|
|
||
|
# reshape back to match original input shape
|
||
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
||
|
|
||
|
if self.remap is not None:
|
||
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
||
|
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
||
|
|
||
|
if self.sane_index_shape:
|
||
|
min_encoding_indices = min_encoding_indices.reshape(
|
||
|
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||
|
|
||
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||
|
|
||
|
def get_codebook_entry(self, indices, shape):
|
||
|
# shape specifying (batch, height, width, channel)
|
||
|
if self.remap is not None:
|
||
|
indices = indices.reshape(shape[0], -1) # add batch axis
|
||
|
indices = self.unmap_to_all(indices)
|
||
|
indices = indices.reshape(-1) # flatten again
|
||
|
|
||
|
# get quantized latent vectors
|
||
|
z_q = self.embedding(indices)
|
||
|
|
||
|
if shape is not None:
|
||
|
z_q = z_q.view(shape)
|
||
|
# reshape back to match original input shape
|
||
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||
|
|
||
|
return z_q
|