2022-09-15 04:10:16 -06:00
import re
from collections import namedtuple
import torch
import modules . shared as shared
re_prompt = re . compile ( r '''
( . * ? )
\[
( [ ^ ] : ] + ) :
( ? : ( [ ^ ] : ] * ) : ) ?
( [ 0 - 9 ] * \. ? [ 0 - 9 ] + )
]
|
( . + )
''' , re.X)
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
# will be represented with prompt_schedule like this (assuming steps=100):
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
# [75, 'fantasy landscape with a lake and an oak in background masterful']
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
def get_learned_conditioning_prompt_schedules ( prompts , steps ) :
res = [ ]
cache = { }
for prompt in prompts :
prompt_schedule : list [ list [ str | int ] ] = [ [ steps , " " ] ]
cached = cache . get ( prompt , None )
if cached is not None :
res . append ( cached )
2022-09-15 09:05:42 -06:00
continue
2022-09-15 04:10:16 -06:00
for m in re_prompt . finditer ( prompt ) :
plaintext = m . group ( 1 ) if m . group ( 5 ) is None else m . group ( 5 )
concept_from = m . group ( 2 )
concept_to = m . group ( 3 )
if concept_to is None :
concept_to = concept_from
concept_from = " "
swap_position = float ( m . group ( 4 ) ) if m . group ( 4 ) is not None else None
if swap_position is not None :
if swap_position < 1 :
swap_position = swap_position * steps
swap_position = int ( min ( swap_position , steps ) )
swap_index = None
found_exact_index = False
for i in range ( len ( prompt_schedule ) ) :
end_step = prompt_schedule [ i ] [ 0 ]
prompt_schedule [ i ] [ 1 ] + = plaintext
if swap_position is not None and swap_index is None :
if swap_position == end_step :
swap_index = i
found_exact_index = True
if swap_position < end_step :
swap_index = i
if swap_index is not None :
if not found_exact_index :
prompt_schedule . insert ( swap_index , [ swap_position , prompt_schedule [ swap_index ] [ 1 ] ] )
for i in range ( len ( prompt_schedule ) ) :
end_step = prompt_schedule [ i ] [ 0 ]
must_replace = swap_position < end_step
prompt_schedule [ i ] [ 1 ] + = concept_to if must_replace else concept_from
res . append ( prompt_schedule )
cache [ prompt ] = prompt_schedule
#for t in prompt_schedule:
# print(t)
return res
ScheduledPromptConditioning = namedtuple ( " ScheduledPromptConditioning " , [ " end_at_step " , " cond " ] )
ScheduledPromptBatch = namedtuple ( " ScheduledPromptBatch " , [ " shape " , " schedules " ] )
def get_learned_conditioning ( prompts , steps ) :
res = [ ]
prompt_schedules = get_learned_conditioning_prompt_schedules ( prompts , steps )
cache = { }
for prompt , prompt_schedule in zip ( prompts , prompt_schedules ) :
cached = cache . get ( prompt , None )
if cached is not None :
res . append ( cached )
2022-09-15 09:05:42 -06:00
continue
2022-09-15 04:10:16 -06:00
texts = [ x [ 1 ] for x in prompt_schedule ]
conds = shared . sd_model . get_learned_conditioning ( texts )
cond_schedule = [ ]
for i , ( end_at_step , text ) in enumerate ( prompt_schedule ) :
cond_schedule . append ( ScheduledPromptConditioning ( end_at_step , conds [ i ] ) )
cache [ prompt ] = cond_schedule
res . append ( cond_schedule )
return ScheduledPromptBatch ( ( len ( prompts ) , ) + res [ 0 ] [ 0 ] . cond . shape , res )
def reconstruct_cond_batch ( c : ScheduledPromptBatch , current_step ) :
2022-09-19 09:18:33 -06:00
res = torch . zeros ( c . shape , device = shared . device , dtype = torch . half )
2022-09-15 04:10:16 -06:00
for i , cond_schedule in enumerate ( c . schedules ) :
target_index = 0
for curret_index , ( end_at , cond ) in enumerate ( cond_schedule ) :
if current_step < = end_at :
target_index = curret_index
break
res [ i ] = cond_schedule [ target_index ] . cond
2022-09-19 09:18:33 -06:00
return res
2022-09-15 04:10:16 -06:00
#get_learned_conditioning_prompt_schedules(["fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"], 100)