2022-12-05 18:03:55 -07:00
|
|
|
model:
|
2023-01-27 01:28:12 -07:00
|
|
|
base_learning_rate: 7.5e-05
|
|
|
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
2022-12-05 18:03:55 -07:00
|
|
|
params:
|
|
|
|
linear_start: 0.00085
|
|
|
|
linear_end: 0.0120
|
|
|
|
num_timesteps_cond: 1
|
|
|
|
log_every_t: 200
|
|
|
|
timesteps: 1000
|
|
|
|
first_stage_key: "jpg"
|
|
|
|
cond_stage_key: "txt"
|
|
|
|
image_size: 64
|
|
|
|
channels: 4
|
2023-01-27 01:28:12 -07:00
|
|
|
cond_stage_trainable: false # Note: different from the one we trained before
|
|
|
|
conditioning_key: hybrid # important
|
2022-12-05 18:03:55 -07:00
|
|
|
monitor: val/loss_simple_ema
|
|
|
|
scale_factor: 0.18215
|
2023-01-27 01:28:12 -07:00
|
|
|
finetune_keys: null
|
|
|
|
|
|
|
|
scheduler_config: # 10000 warmup steps
|
|
|
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
|
|
|
params:
|
|
|
|
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
|
|
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
|
|
|
f_start: [ 1.e-6 ]
|
|
|
|
f_max: [ 1. ]
|
|
|
|
f_min: [ 1. ]
|
2022-12-05 18:03:55 -07:00
|
|
|
|
|
|
|
unet_config:
|
|
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
|
|
params:
|
|
|
|
image_size: 32 # unused
|
2023-01-27 01:28:12 -07:00
|
|
|
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
2022-12-05 18:03:55 -07:00
|
|
|
out_channels: 4
|
|
|
|
model_channels: 320
|
|
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
|
|
num_res_blocks: 2
|
|
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
2023-01-27 01:28:12 -07:00
|
|
|
num_heads: 8
|
2022-12-05 18:03:55 -07:00
|
|
|
use_spatial_transformer: True
|
|
|
|
transformer_depth: 1
|
2023-01-27 01:28:12 -07:00
|
|
|
context_dim: 768
|
2024-05-15 13:20:40 -06:00
|
|
|
use_checkpoint: False
|
2022-12-05 18:03:55 -07:00
|
|
|
legacy: False
|
|
|
|
|
|
|
|
first_stage_config:
|
|
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
|
|
params:
|
|
|
|
embed_dim: 4
|
|
|
|
monitor: val/rec_loss
|
|
|
|
ddconfig:
|
|
|
|
double_z: true
|
|
|
|
z_channels: 4
|
|
|
|
resolution: 256
|
|
|
|
in_channels: 3
|
|
|
|
out_ch: 3
|
|
|
|
ch: 128
|
|
|
|
ch_mult:
|
|
|
|
- 1
|
|
|
|
- 2
|
|
|
|
- 4
|
|
|
|
- 4
|
|
|
|
num_res_blocks: 2
|
|
|
|
attn_resolutions: []
|
|
|
|
dropout: 0.0
|
|
|
|
lossconfig:
|
|
|
|
target: torch.nn.Identity
|
|
|
|
|
|
|
|
cond_stage_config:
|
2023-01-27 01:28:12 -07:00
|
|
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|