use_checkpoint = False

This commit is contained in:
huchenlei 2024-05-15 15:20:40 -04:00
parent 1c0a0c4c26
commit 022d835565
8 changed files with 13 additions and 10 deletions

View File

@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
use_checkpoint: False
legacy: False
first_stage_config:

View File

@ -41,7 +41,7 @@ model:
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
use_checkpoint: True
use_checkpoint: False
legacy: False
first_stage_config:

View File

@ -45,7 +45,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
use_checkpoint: False
legacy: False
first_stage_config:

View File

@ -21,7 +21,7 @@ model:
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
use_checkpoint: False
in_channels: 9
out_channels: 4
model_channels: 320

View File

@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
use_checkpoint: False
legacy: False
first_stage_config:

View File

@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
use_checkpoint: False
legacy: False
first_stage_config:

View File

@ -4,16 +4,19 @@ import ldm.modules.attention
import ldm.modules.diffusionmodules.openaimodel
# Setting flag=False so that torch skips checking parameters.
# parameters checking is expensive in frequent operations.
def BasicTransformerBlock_forward(self, x, context=None):
return checkpoint(self._forward, x, context)
return checkpoint(self._forward, x, context, flag=False)
def AttentionBlock_forward(self, x):
return checkpoint(self._forward, x)
return checkpoint(self._forward, x, flag=False)
def ResBlock_forward(self, x, emb):
return checkpoint(self._forward, x, emb)
return checkpoint(self._forward, x, emb, flag=False)
stored = []

View File

@ -35,7 +35,7 @@ def is_using_v_parameterization_for_sd2(state_dict):
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
use_checkpoint=True,
use_checkpoint=False,
use_fp16=False,
image_size=32,
in_channels=4,