From 056f06d3738c267b1014e6e8e1ef5bd97af1fb45 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Wed, 2 Nov 2022 12:51:46 +0700 Subject: [PATCH] Reload VAE without reloading sd checkpoint --- modules/sd_models.py | 15 ++++--- modules/sd_vae.py | 97 ++++++++++++++++++++++++++++++++++++++++---- webui.py | 4 +- 3 files changed, 98 insertions(+), 18 deletions(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 6ab85b651..883639d1f 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd): return pl_sd -vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - checkpoint_key = (checkpoint_info, vae_file) + checkpoint_key = checkpoint_info if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") @@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, vae_file) - model.first_stage_model.to(devices.dtype_vae) - if shared.opts.sd_checkpoint_cache > 0: + # if PR #4035 were to get merged, restore base VAE first before caching checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU + else: vae_name = sd_vae.get_filename(vae_file) print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") @@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.load_vae(model, vae_file) + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack @@ -254,14 +253,14 @@ def load_model(checkpoint_info=None): return sd_model -def reload_model_weights(sd_model=None, info=None, force=False): +def reload_model_weights(sd_model=None, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() if not sd_model: sd_model = shared.sd_model - if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): diff --git a/modules/sd_vae.py b/modules/sd_vae.py index e9239326d..78e14e8a6 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,26 +1,65 @@ import torch import os from collections import namedtuple -from modules import shared, devices +from modules import shared, devices, script_callbacks from modules.paths import models_path import glob + model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) vae_dir = "VAE" vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) + vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} + + default_vae_dict = {"auto": "auto", "None": "None"} default_vae_list = ["auto", "None"] + + default_vae_values = [default_vae_dict[x] for x in default_vae_list] vae_dict = dict(default_vae_dict) vae_list = list(default_vae_list) first_load = True + +base_vae = None +loaded_vae_file = None +checkpoint_info = None + + +def get_base_vae(model): + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: + return base_vae + return None + + +def store_base_vae(model): + global base_vae, checkpoint_info + if checkpoint_info != model.sd_checkpoint_info: + base_vae = model.first_stage_model.state_dict().copy() + checkpoint_info = model.sd_checkpoint_info + + +def delete_base_vae(): + global base_vae, checkpoint_info + base_vae = None + checkpoint_info = None + + +def restore_base_vae(model): + global base_vae, checkpoint_info + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: + load_vae_dict(model, base_vae) + delete_base_vae() + + def get_filename(filepath): return os.path.splitext(os.path.basename(filepath))[0] + def refresh_vae_list(vae_path=vae_path, model_path=model_path): global vae_dict, vae_list res = {} @@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list + def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"): return vae_file -def load_vae(model, vae_file): - global first_load, vae_dict, vae_list + +def load_vae(model, vae_file=None): + global first_load, vae_dict, vae_list, loaded_vae_file # save_settings = False if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - model.first_stage_model.load_state_dict(vae_dict_1) + load_vae_dict(model, vae_dict_1) - # If vae used is not in dict, update it - # It will be removed on refresh though - if vae_file is not None: + # If vae used is not in dict, update it + # It will be removed on refresh though vae_opt = get_filename(vae_file) if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) + loaded_vae_file = vae_file + """ # Save current VAE to VAE settings, maybe? will it work? if save_settings: @@ -124,4 +166,45 @@ def load_vae(model, vae_file): """ first_load = False + + +# don't call this from outside +def load_vae_dict(model, vae_dict_1=None): + if vae_dict_1: + store_base_vae(model) + model.first_stage_model.load_state_dict(vae_dict_1) + else: + restore_base_vae() model.first_stage_model.to(devices.dtype_vae) + + +def reload_vae_weights(sd_model=None, vae_file="auto"): + from modules import lowvram, devices, sd_hijack + + if not sd_model: + sd_model = shared.sd_model + + checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_file = checkpoint_info.filename + vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) + + if loaded_vae_file == vae_file: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + sd_hijack.model_hijack.undo_hijack(sd_model) + + load_vae(sd_model, vae_file) + + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print(f"VAE Weights loaded.") + return sd_model diff --git a/webui.py b/webui.py index 7cb4691b1..034777a2f 100644 --- a/webui.py +++ b/webui.py @@ -81,9 +81,7 @@ def initialize(): modules.sd_vae.refresh_vae_list() modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) - # I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram, - # so for now this reloads the whole model too - shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(force=True)), call=False) + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)