fix NaN issue when running without --precision half
This commit is contained in:
parent
80f618ea95
commit
06d0a5ab4d
|
@ -262,8 +262,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||
|
||||
def forward(self, tokens):
|
||||
backup_embeds = self.transformer.get_input_embeddings()
|
||||
device = backup_embeds.weight.device
|
||||
tokens = torch.LongTensor(tokens).to(device)
|
||||
tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device)
|
||||
outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
if self.layer == "last":
|
||||
|
|
|
@ -149,6 +149,7 @@ class SD3Inferencer(torch.nn.Module):
|
|||
return contextlib.nullcontext()
|
||||
|
||||
def get_learned_conditioning(self, batch: list[str]):
|
||||
with devices.without_autocast():
|
||||
return self.cond_stage_model(batch)
|
||||
|
||||
def apply_model(self, x, t, cond):
|
||||
|
|
Loading…
Reference in New Issue