diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index 9942bd7ea..088ac24be 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -30,30 +30,53 @@ class DisableInitialization: def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs): return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) - def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): + def transformers_modeling_utils_load_pretrained_model(*args, **kwargs): + args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug + return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs) + + def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs): # this file is always 404, prevent making request if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json': raise transformers.utils.hub.EntryNotFoundError try: - return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=True, **kwargs) + return original(url, *args, local_files_only=True, **kwargs) except Exception as e: - return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs) + return original(url, *args, local_files_only=False, **kwargs) + + def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs) + + def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs) + + def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs) self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ self.init_no_grad_normal = torch.nn.init._no_grad_normal_ self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_ self.create_model_and_transforms = open_clip.create_model_and_transforms self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained - self.transformers_utils_hub_get_from_cache = transformers.utils.hub.get_from_cache + self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None) + self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None) + self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None) + self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None) torch.nn.init.kaiming_uniform_ = do_nothing torch.nn.init._no_grad_normal_ = do_nothing torch.nn.init._no_grad_uniform_ = do_nothing open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained - transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache + if self.transformers_modeling_utils_load_pretrained_model is not None: + transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model + if self.transformers_tokenization_utils_base_cached_file is not None: + transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file + if self.transformers_configuration_utils_cached_file is not None: + transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file + if self.transformers_utils_hub_get_from_cache is not None: + transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache def __exit__(self, exc_type, exc_val, exc_tb): torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform @@ -61,5 +84,12 @@ class DisableInitialization: torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_ open_clip.create_model_and_transforms = self.create_model_and_transforms ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained - transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache + if self.transformers_modeling_utils_load_pretrained_model is not None: + transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model + if self.transformers_tokenization_utils_base_cached_file is not None: + transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file + if self.transformers_configuration_utils_cached_file is not None: + transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file + if self.transformers_utils_hub_get_from_cache is not None: + transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache diff --git a/modules/sd_models.py b/modules/sd_models.py index 1bb9088b3..b5bc12f09 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,7 +14,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -333,7 +333,11 @@ def load_model(checkpoint_info=None): timer = Timer() - with sd_disable_initialization.DisableInitialization(): + try: + with sd_disable_initialization.DisableInitialization(): + sd_model = instantiate_from_config(sd_config.model) + except Exception as e: + print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) sd_model = instantiate_from_config(sd_config.model) elapsed_create = timer.elapsed()