Merge branch 'master' into master
This commit is contained in:
commit
15a700bbe5
13
README.md
13
README.md
|
@ -133,3 +133,16 @@ the same effect. Use the --no-progressbar-hiding commandline option to revert th
|
|||
### Prompt validation
|
||||
Stable Diffusion has a limit for input text length. If your prompt is too long, you will get a
|
||||
warning in the text output field, showing which parts of your text were truncated and ignored by the model.
|
||||
|
||||
### Loopback
|
||||
A checkbox for img2img allowing to automatically feed output image as input for the next batch. Equivalent to
|
||||
saving output image, and replacing input image with it. Batch count setting controls how many iterations of
|
||||
this you get.
|
||||
|
||||
Usually, when doing this, you would choose one of many images for the next iteration yourself, so the usefulness
|
||||
of this feature may be questionable, but I've managed to get some very nice outputs with it that I wasn't abble
|
||||
to get otherwise.
|
||||
|
||||
Example: (cherrypicked result; original picture by anon)
|
||||
|
||||
![](images/loopback.jpg)
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 465 KiB |
98
webui.py
98
webui.py
|
@ -49,6 +49,8 @@ parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=(
|
|||
parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long")
|
||||
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg")
|
||||
opt = parser.parse_args()
|
||||
|
||||
GFPGAN_dir = opt.gfpgan_dir
|
||||
|
@ -159,8 +161,10 @@ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cp
|
|||
model = (model if opt.no_half else model.half()).to(device)
|
||||
|
||||
|
||||
def image_grid(imgs, batch_size, round_down=False):
|
||||
if opt.n_rows > 0:
|
||||
def image_grid(imgs, batch_size, round_down=False, force_n_rows=None):
|
||||
if force_n_rows is not None:
|
||||
rows = force_n_rows
|
||||
elif opt.n_rows > 0:
|
||||
rows = opt.n_rows
|
||||
elif opt.n_rows == 0:
|
||||
rows = batch_size
|
||||
|
@ -299,7 +303,7 @@ def check_prompt_length(prompt, comments):
|
|||
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN):
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, do_not_save_grid=False):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
|
||||
assert prompt is not None
|
||||
|
@ -390,7 +394,7 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
|||
output_images.append(image)
|
||||
base_count += 1
|
||||
|
||||
if prompt_matrix or not opt.skip_grid:
|
||||
if (prompt_matrix or not opt.skip_grid) and not do_not_save_grid:
|
||||
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
||||
|
||||
if prompt_matrix:
|
||||
|
@ -404,8 +408,8 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
|||
|
||||
output_images.insert(0, grid)
|
||||
|
||||
grid_file = f"grid-{grid_count:05}-{seed}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.jpg"
|
||||
grid.save(os.path.join(outpath, grid_file), 'jpeg', quality=80, optimize=True)
|
||||
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{opt.grid_format}'))
|
||||
grid_count += 1
|
||||
|
||||
info = f"""
|
||||
|
@ -510,7 +514,7 @@ txt2img_interface = gr.Interface(
|
|||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Slider(minimum=1, maximum=opt.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||
gr.Number(label='Seed', value=-1),
|
||||
|
@ -528,13 +532,12 @@ txt2img_interface = gr.Interface(
|
|||
)
|
||||
|
||||
|
||||
def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_matrix, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int):
|
||||
def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_matrix, loopback: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int):
|
||||
outpath = opt.outdir or "outputs/img2img-samples"
|
||||
|
||||
sampler = KDiffusionSampler(model)
|
||||
|
||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
t_enc = int(denoising_strength * ddim_steps)
|
||||
|
||||
def init():
|
||||
image = init_img.convert("RGB")
|
||||
|
@ -551,6 +554,8 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
|||
return init_latent,
|
||||
|
||||
def sample(init_data, x, conditioning, unconditional_conditioning):
|
||||
t_enc = int(denoising_strength * ddim_steps)
|
||||
|
||||
x0, = init_data
|
||||
|
||||
sigmas = sampler.model_wrap.get_sigmas(ddim_steps)
|
||||
|
@ -562,22 +567,62 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
|||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False)
|
||||
return samples_ddim
|
||||
|
||||
output_images, seed, info = process_images(
|
||||
outpath=outpath,
|
||||
func_init=init,
|
||||
func_sample=sample,
|
||||
prompt=prompt,
|
||||
seed=seed,
|
||||
sampler_name='k-diffusion',
|
||||
batch_size=batch_size,
|
||||
n_iter=n_iter,
|
||||
steps=ddim_steps,
|
||||
cfg_scale=cfg_scale,
|
||||
width=width,
|
||||
height=height,
|
||||
prompt_matrix=prompt_matrix,
|
||||
use_GFPGAN=use_GFPGAN
|
||||
)
|
||||
if loopback:
|
||||
output_images, info = None, None
|
||||
history = []
|
||||
initial_seed = None
|
||||
|
||||
for i in range(n_iter):
|
||||
output_images, seed, info = process_images(
|
||||
outpath=outpath,
|
||||
func_init=init,
|
||||
func_sample=sample,
|
||||
prompt=prompt,
|
||||
seed=seed,
|
||||
sampler_name='k-diffusion',
|
||||
batch_size=1,
|
||||
n_iter=1,
|
||||
steps=ddim_steps,
|
||||
cfg_scale=cfg_scale,
|
||||
width=width,
|
||||
height=height,
|
||||
prompt_matrix=prompt_matrix,
|
||||
use_GFPGAN=use_GFPGAN,
|
||||
do_not_save_grid=True
|
||||
)
|
||||
|
||||
if initial_seed is None:
|
||||
initial_seed = seed
|
||||
|
||||
init_img = output_images[0]
|
||||
seed = seed + 1
|
||||
denoising_strength = max(denoising_strength * 0.95, 0.1)
|
||||
history.append(init_img)
|
||||
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
grid = image_grid(history, batch_size, force_n_rows=1)
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{opt.grid_format}'))
|
||||
|
||||
output_images = history
|
||||
seed = initial_seed
|
||||
|
||||
else:
|
||||
output_images, seed, info = process_images(
|
||||
outpath=outpath,
|
||||
func_init=init,
|
||||
func_sample=sample,
|
||||
prompt=prompt,
|
||||
seed=seed,
|
||||
sampler_name='k-diffusion',
|
||||
batch_size=batch_size,
|
||||
n_iter=n_iter,
|
||||
steps=ddim_steps,
|
||||
cfg_scale=cfg_scale,
|
||||
width=width,
|
||||
height=height,
|
||||
prompt_matrix=prompt_matrix,
|
||||
use_GFPGAN=use_GFPGAN
|
||||
)
|
||||
|
||||
del sampler
|
||||
|
||||
|
@ -595,7 +640,8 @@ img2img_interface = gr.Interface(
|
|||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False),
|
||||
gr.Slider(minimum=1, maximum=opt.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
||||
|
|
Loading…
Reference in New Issue