Add general forward method for all modules.

This commit is contained in:
Kohaku-Blueleaf 2024-01-05 16:32:19 +08:00
parent a06dab8d7a
commit 18ca987c92
2 changed files with 39 additions and 7 deletions

View File

@ -3,6 +3,10 @@ import os
from collections import namedtuple
import enum
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import sd_models, cache, errors, hashes, shared
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
@ -115,6 +119,29 @@ class NetworkModule:
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.ops = None
self.extra_kwargs = {}
if isinstance(self.sd_module, nn.Conv2d):
self.ops = F.conv2d
self.extra_kwargs = {
'stride': self.sd_module.stride,
'padding': self.sd_module.padding
}
elif isinstance(self.sd_module, nn.Linear):
self.ops = F.linear
elif isinstance(self.sd_module, nn.LayerNorm):
self.ops = F.layer_norm
self.extra_kwargs = {
'normalized_shape': self.sd_module.normalized_shape,
'eps': self.sd_module.eps
}
elif isinstance(self.sd_module, nn.GroupNorm):
self.ops = F.group_norm
self.extra_kwargs = {
'num_groups': self.sd_module.num_groups,
'eps': self.sd_module.eps
}
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
@ -155,5 +182,10 @@ class NetworkModule:
raise NotImplementedError()
def forward(self, x, y):
"""A general forward implementation for all modules"""
if self.ops is None:
raise NotImplementedError()
else:
updown, ex_bias = self.calc_updown(self.sd_module.weight)
return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)

View File

@ -458,23 +458,23 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
self.network_current_names = wanted_names
def network_forward(module, input, original_forward):
def network_forward(org_module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(module, input)
return original_forward(org_module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(module)
network_reset_cached_weight(module)
network_restore_weights_from_backup(org_module)
network_reset_cached_weight(org_module)
y = original_forward(module, input)
y = original_forward(org_module, input)
network_layer_name = getattr(module, 'network_layer_name', None)
network_layer_name = getattr(org_module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None: