inference working but SLOW
This commit is contained in:
parent
ec718f76b5
commit
1c6efdbba7
|
@ -12,6 +12,7 @@ class ModuleTypeOFT(network.ModuleType):
|
|||
# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
||||
class NetworkModuleOFT(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.oft_blocks = weights.w["oft_blocks"]
|
||||
|
@ -20,24 +21,29 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||
self.dim = self.oft_blocks.shape[0]
|
||||
self.num_blocks = self.dim
|
||||
|
||||
#if type(self.alpha) == torch.Tensor:
|
||||
# self.alpha = self.alpha.detach().numpy()
|
||||
|
||||
if "Linear" in self.sd_module.__class__.__name__:
|
||||
self.out_dim = self.sd_module.out_features
|
||||
elif "Conv" in self.sd_module.__class__.__name__:
|
||||
self.out_dim = self.sd_module.out_channels
|
||||
|
||||
self.constraint = self.alpha * self.out_dim
|
||||
self.constraint = self.alpha
|
||||
#self.constraint = self.alpha * self.out_dim
|
||||
self.block_size = self.out_dim // self.num_blocks
|
||||
|
||||
self.oft_multiplier = self.multiplier()
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
self.R = self.get_weight()
|
||||
|
||||
self.apply_to()
|
||||
|
||||
# replace forward method of original linear rather than replacing the module
|
||||
# self.org_forward = self.sd_module.forward
|
||||
# self.sd_module.forward = self.forward
|
||||
def apply_to(self):
|
||||
self.org_forward = self.org_module[0].forward
|
||||
self.org_module[0].forward = self.forward
|
||||
|
||||
def get_weight(self):
|
||||
def get_weight(self, multiplier=None):
|
||||
if not multiplier:
|
||||
multiplier = self.multiplier()
|
||||
block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2)
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||
|
@ -45,38 +51,31 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||
I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
||||
|
||||
block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
||||
block_R_weighted = multiplier * block_R + (1 - multiplier) * I
|
||||
R = torch.block_diag(*block_R_weighted)
|
||||
|
||||
return R
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
||||
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
||||
|
||||
block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
||||
R = torch.block_diag(*block_R_weighted)
|
||||
#R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
# W = R*W_0
|
||||
updown = orig_weight + R
|
||||
output_shape = [R.size(0), orig_weight.size(1)]
|
||||
R = self.R
|
||||
if orig_weight.dim() == 4:
|
||||
weight = torch.einsum("oihw, op -> pihw", orig_weight, R)
|
||||
else:
|
||||
weight = torch.einsum("oi, op -> pi", orig_weight, R)
|
||||
updown = orig_weight @ R
|
||||
output_shape = [orig_weight.size(0), R.size(1)]
|
||||
#output_shape = [R.size(0), orig_weight.size(1)]
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
# def forward(self, x, y=None):
|
||||
# x = self.org_forward(x)
|
||||
# if self.oft_multiplier == 0.0:
|
||||
# return x
|
||||
|
||||
# R = self.get_weight().to(x.device, dtype=x.dtype)
|
||||
# if x.dim() == 4:
|
||||
# x = x.permute(0, 2, 3, 1)
|
||||
# x = torch.matmul(x, R)
|
||||
# x = x.permute(0, 3, 1, 2)
|
||||
# else:
|
||||
# x = torch.matmul(x, R)
|
||||
# return x
|
||||
def forward(self, x, y=None):
|
||||
x = self.org_forward(x)
|
||||
if self.multiplier() == 0.0:
|
||||
return x
|
||||
R = self.get_weight().to(x.device, dtype=x.dtype)
|
||||
if x.dim() == 4:
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
x = torch.matmul(x, R)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
else:
|
||||
x = torch.matmul(x, R)
|
||||
return x
|
||||
|
|
|
@ -170,6 +170,10 @@ def load_network(name, network_on_disk):
|
|||
emb_dict[vec_name] = weight
|
||||
bundle_embeddings[emb_name] = emb_dict
|
||||
|
||||
#if key_network_without_network_parts == "oft_unet":
|
||||
# print(key_network_without_network_parts)
|
||||
# pass
|
||||
|
||||
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
|
@ -185,15 +189,39 @@ def load_network(name, network_on_disk):
|
|||
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
||||
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
||||
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
# some SD1 Loras also have correct compvis keys
|
||||
if sd_module is None:
|
||||
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
||||
# UNET_TARGET_REPLACE_MODULE_ALL_LINEAR = ["Transformer2DModel"]
|
||||
# UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
||||
UNET_TARGET_REPLACE_MODULE_ATTN_ONLY = ["CrossAttention"]
|
||||
# TODO: Change matchedm odules based on whether all linear, conv, etc
|
||||
|
||||
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
#key_no_suffix = key.rsplit("_to_", 1)[0]
|
||||
## Match all modules of class CrossAttention
|
||||
#replace_module_list = []
|
||||
#for module_type in UNET_TARGET_REPLACE_MODULE_ATTN_ONLY:
|
||||
# replace_module_list += [module for k, module in shared.sd_model.network_layer_mapping.items() if module_type in module.__class__.__name__]
|
||||
|
||||
#matched_module = replace_module_list.get(key_no_suffix, None)
|
||||
#if key.endswith('to_q'):
|
||||
# sd_module = matched_module.to_q or None
|
||||
#if key.endswith('to_k'):
|
||||
# sd_module = matched_module.to_k or None
|
||||
#if key.endswith('to_v'):
|
||||
# sd_module = matched_module.to_v or None
|
||||
#if key.endswith('to_out_0'):
|
||||
# sd_module = matched_module.to_out[0] or None
|
||||
#if key.endswith('to_out_1'):
|
||||
# sd_module = matched_module.to_out[1] or None
|
||||
|
||||
|
||||
if sd_module is None:
|
||||
keys_failed_to_match[key_network] = key
|
||||
continue
|
||||
|
@ -215,6 +243,14 @@ def load_network(name, network_on_disk):
|
|||
|
||||
net.modules[key] = net_module
|
||||
|
||||
# replaces forward method of original Linear
|
||||
# applied_to_count = 0
|
||||
#for key, created_module in net.modules.items():
|
||||
# if isinstance(created_module, network_oft.NetworkModuleOFT):
|
||||
# net_module.apply_to()
|
||||
#applied_to_count += 1
|
||||
# print(f'Applied OFT modules: {applied_to_count}')
|
||||
|
||||
embeddings = {}
|
||||
for emb_name, data in bundle_embeddings.items():
|
||||
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
|
||||
|
|
Loading…
Reference in New Issue