From 26d08193848568b06105a1ee7b76f338ebf0f0ee Mon Sep 17 00:00:00 2001 From: Chris OBryan <13701027+cobryan05@users.noreply.github.com> Date: Fri, 28 Oct 2022 13:24:11 -0500 Subject: [PATCH 1/5] extras: Add option to run upscaling before face fixing Face restoration can look much better if ran after upscaling, as it allows the restoration to fix upscaling artifacts. This patch adds an option to choose which order to run upscaling/face fixing in. --- modules/extras.py | 157 +++++++++++++++++++++++++++++----------------- modules/ui.py | 4 ++ 2 files changed, 105 insertions(+), 56 deletions(-) diff --git a/modules/extras.py b/modules/extras.py index 22c5a1c12..79047f3a0 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -7,6 +7,10 @@ from PIL import Image import torch import tqdm +from typing import Callable, List, Tuple +from functools import partial +from dataclasses import dataclass + from modules import processing, shared, images, devices, sd_models from modules.shared import opts import modules.gfpgan_model @@ -20,7 +24,7 @@ import gradio as gr cached_images = {} -def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): +def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ): devices.torch_gc() imageArr = [] @@ -56,7 +60,99 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ else: outpath = opts.outdir_samples or opts.outdir_extras_samples - + + # Extra operation definitions + def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) + res = Image.fromarray(restored_img) + + if gfpgan_visibility < 1.0: + res = Image.blend(image, res, gfpgan_visibility) + + info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" + return (res, info) + + def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) + res = Image.fromarray(restored_img) + + if codeformer_visibility < 1.0: + res = Image.blend(image, res, codeformer_visibility) + + info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" + return (res, info) + + + def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): + small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) + pixels = tuple(np.array(small).flatten().tolist()) + key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, + resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels + + c = cached_images.get(key) + if c is None: + upscaler = shared.sd_upscalers[scaler_index] + c = upscaler.scaler.upscale(image, resize, upscaler.data_path) + if mode == 1 and crop: + cropped = Image.new("RGB", (resize_w, resize_h)) + cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) + c = cropped + cached_images[key] = c + return c + + + def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text + nonlocal upscaling_resize + if resize_mode == 1: + upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height) + crop_info = " (crop)" if upscaling_crop else "" + info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n" + return (image, info) + + @dataclass + class UpscaleParams: + upscaler_idx: int + blend_alpha: float + + def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: + blended_result: Image.Image = None + for upscaler in params: + res = upscale(image, upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" + if blended_result is None: + blended_result = res + else: + blended_result = Image.blend(blended_result, res, upscaler.blend_alpha) + return (blended_result, info) + + # Build a list of operations to run + facefix_ops: List[Callable] = [] + if gfpgan_visibility > 0: + facefix_ops.append(run_gfpgan) + if codeformer_visibility > 0: + facefix_ops.append(run_codeformer) + + upscale_ops: List[Callable] = [] + if resize_mode == 1: + upscale_ops.append(run_prepare_crop) + + if upscaling_resize != 0: + step_params: List[UpscaleParams] = [] + step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_1, blend_alpha=1.0 )) + if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: + step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility ) ) + + upscale_ops.append( partial(run_upscalers_blend, step_params) ) + + + extras_ops: List[Callable] = [] + if upscale_first: + extras_ops = upscale_ops + facefix_ops + else: + extras_ops = facefix_ops + upscale_ops + + for image, image_name in zip(imageArr, imageNameArr): if image is None: return outputs, "Please select an input image.", '' @@ -64,60 +160,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ image = image.convert("RGB") info = "" - - if gfpgan_visibility > 0: - restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) - res = Image.fromarray(restored_img) - - if gfpgan_visibility < 1.0: - res = Image.blend(image, res, gfpgan_visibility) - - info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" - image = res - - if codeformer_visibility > 0: - restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) - res = Image.fromarray(restored_img) - - if codeformer_visibility < 1.0: - res = Image.blend(image, res, codeformer_visibility) - - info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" - image = res - - if resize_mode == 1: - upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height) - crop_info = " (crop)" if upscaling_crop else "" - info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n" - - if upscaling_resize != 1.0: - def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): - small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) - pixels = tuple(np.array(small).flatten().tolist()) - key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, - resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels - - c = cached_images.get(key) - if c is None: - upscaler = shared.sd_upscalers[scaler_index] - c = upscaler.scaler.upscale(image, resize, upscaler.data_path) - if mode == 1 and crop: - cropped = Image.new("RGB", (resize_w, resize_h)) - cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) - c = cropped - cached_images[key] = c - - return c - - info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n" - res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - - if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: - res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n" - res = Image.blend(res, res2, extras_upscaler_2_visibility) - - image = res + # Run each operation on each image + for op in extras_ops: + image, info = op(image, info) while len(cached_images) > 2: del cached_images[next(iter(cached_images.keys()))] diff --git a/modules/ui.py b/modules/ui.py index 0a63e3570..16b6ac49a 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1119,6 +1119,9 @@ def create_ui(wrap_gradio_gpu_call): codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer) + with gr.Group(): + upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False) + submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') with gr.Column(variant='panel'): @@ -1152,6 +1155,7 @@ def create_ui(wrap_gradio_gpu_call): extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, + upscale_before_face_fix, ], outputs=[ result_images, From bde4731f1d3ddf30c46f86c9f6e71e6c0644089d Mon Sep 17 00:00:00 2001 From: Chris OBryan <13701027+cobryan05@users.noreply.github.com> Date: Fri, 28 Oct 2022 14:30:04 -0500 Subject: [PATCH 2/5] extras: Rework image cache Bit of a refactor to the image cache to make it easier to extend. Also takes into account the entire image instead of just a cropped portion. --- modules/extras.py | 52 +++++++++++++++++++++++++++++------------------ 1 file changed, 32 insertions(+), 20 deletions(-) diff --git a/modules/extras.py b/modules/extras.py index 79047f3a0..cffe0381b 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -7,7 +7,7 @@ from PIL import Image import torch import tqdm -from typing import Callable, List, Tuple +from typing import Callable, Dict, List, Tuple from functools import partial from dataclasses import dataclass @@ -21,7 +21,18 @@ import piexif.helper import gradio as gr -cached_images = {} +@dataclass(frozen=True) +class CacheKey: + image_hash: int + info_hash: int + args_hash: int + +@dataclass +class CacheEntry: + image: Image.Image + info: str + +cached_images: Dict[CacheKey, CacheEntry] = {} def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ): @@ -84,22 +95,13 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): - small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) - pixels = tuple(np.array(small).flatten().tolist()) - key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, - resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels - - c = cached_images.get(key) - if c is None: - upscaler = shared.sd_upscalers[scaler_index] - c = upscaler.scaler.upscale(image, resize, upscaler.data_path) - if mode == 1 and crop: - cropped = Image.new("RGB", (resize_w, resize_h)) - cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) - c = cropped - cached_images[key] = c - return c - + upscaler = shared.sd_upscalers[scaler_index] + res = upscaler.scaler.upscale(image, resize, upscaler.data_path) + if mode == 1 and crop: + cropped = Image.new("RGB", (resize_w, resize_h)) + cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2)) + res = cropped + return res def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]: # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text @@ -118,8 +120,18 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: blended_result: Image.Image = None for upscaler in params: - res = upscale(image, upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" + upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + cache_key = CacheKey( image_hash = hash(np.array(image.getdata()).tobytes()), + info_hash = hash(info), + args_hash = hash(upscale_args) ) + cached_entry = cached_images.get(cache_key) + if cached_entry is None: + res = upscale(image, *upscale_args) + info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" + cached_images[cache_key] = CacheEntry(image=res, info=info) + else: + res, info = cached_entry.image, cached_entry.info + if blended_result is None: blended_result = res else: From 1f1b327959b546b5e6f995905a1699c5fe4a0c35 Mon Sep 17 00:00:00 2001 From: Chris OBryan <13701027+cobryan05@users.noreply.github.com> Date: Fri, 28 Oct 2022 16:11:16 -0500 Subject: [PATCH 3/5] extras: Make image cache LRU This changes the extras image cache into a Least-Recently-Used cache. This allows more experimentation with different upscalers without missing the cache. Max cache size is increased to 5 and is cleared on source image update. --- modules/extras.py | 67 +++++++++++++++++++++++++++-------------------- modules/ui.py | 5 ++++ 2 files changed, 43 insertions(+), 29 deletions(-) diff --git a/modules/extras.py b/modules/extras.py index cffe0381b..72cc6d1d2 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -1,3 +1,4 @@ +from __future__ import annotations import math import os @@ -7,7 +8,7 @@ from PIL import Image import torch import tqdm -from typing import Callable, Dict, List, Tuple +from typing import Callable, List, OrderedDict, Tuple from functools import partial from dataclasses import dataclass @@ -21,18 +22,34 @@ import piexif.helper import gradio as gr -@dataclass(frozen=True) -class CacheKey: - image_hash: int - info_hash: int - args_hash: int +class LruCache(OrderedDict): + @dataclass(frozen=True) + class Key: + image_hash: int + info_hash: int + args_hash: int -@dataclass -class CacheEntry: - image: Image.Image - info: str + @dataclass + class Value: + image: Image.Image + info: str -cached_images: Dict[CacheKey, CacheEntry] = {} + def __init__(self, max_size:int = 5, *args, **kwargs): + super().__init__(*args, **kwargs) + self._max_size = max_size + + def get(self, key: LruCache.Key) -> LruCache.Value: + ret = super().get(key) + if ret is not None: + self.move_to_end(key) # Move to end of eviction list + return ret + + def put(self, key: LruCache.Key, value: LruCache.Value) -> None: + self[key] = value + while len(self) > self._max_size: + self.popitem(last=False) + +cached_images: LruCache = LruCache(max_size = 5) def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ): @@ -121,14 +138,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ blended_result: Image.Image = None for upscaler in params: upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - cache_key = CacheKey( image_hash = hash(np.array(image.getdata()).tobytes()), + cache_key = LruCache.Key( image_hash = hash(np.array(image.getdata()).tobytes()), info_hash = hash(info), - args_hash = hash(upscale_args) ) + args_hash = hash(upscale_args + (upscaler.blend_alpha,)) ) cached_entry = cached_images.get(cache_key) if cached_entry is None: res = upscale(image, *upscale_args) info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" - cached_images[cache_key] = CacheEntry(image=res, info=info) + cached_images.put(cache_key, LruCache.Value(image=res, info=info)) else: res, info = cached_entry.image, cached_entry.info @@ -140,14 +157,11 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ # Build a list of operations to run facefix_ops: List[Callable] = [] - if gfpgan_visibility > 0: - facefix_ops.append(run_gfpgan) - if codeformer_visibility > 0: - facefix_ops.append(run_codeformer) + facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else [] + facefix_ops += [run_codeformer] if codeformer_visibility > 0 else [] upscale_ops: List[Callable] = [] - if resize_mode == 1: - upscale_ops.append(run_prepare_crop) + upscale_ops += [run_prepare_crop] if resize_mode == 1 else [] if upscaling_resize != 0: step_params: List[UpscaleParams] = [] @@ -157,12 +171,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ upscale_ops.append( partial(run_upscalers_blend, step_params) ) - - extras_ops: List[Callable] = [] - if upscale_first: - extras_ops = upscale_ops + facefix_ops - else: - extras_ops = facefix_ops + upscale_ops + extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops) for image, image_name in zip(imageArr, imageNameArr): @@ -176,9 +185,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ for op in extras_ops: image, info = op(image, info) - while len(cached_images) > 2: - del cached_images[next(iter(cached_images.keys()))] - if opts.use_original_name_batch and image_name != None: basename = os.path.splitext(os.path.basename(image_name))[0] else: @@ -198,6 +204,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ return outputs, plaintext_to_html(info), '' +def clear_cache(): + cached_images.clear() + def run_pnginfo(image): if image is None: diff --git a/modules/ui.py b/modules/ui.py index 16b6ac49a..b7c36c557 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1178,6 +1178,11 @@ def create_ui(wrap_gradio_gpu_call): outputs=[init_img_with_mask], ) + extras_image.change( + fn=modules.extras.clear_cache, + inputs=[], outputs=[] + ) + with gr.Blocks(analytics_enabled=False) as pnginfo_interface: with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): From 5732c0282d529ef2e0591c76e16959e97240dad8 Mon Sep 17 00:00:00 2001 From: Chris OBryan <13701027+cobryan05@users.noreply.github.com> Date: Fri, 28 Oct 2022 16:36:25 -0500 Subject: [PATCH 4/5] extras-tweaks: autoformat changed lines --- modules/extras.py | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/modules/extras.py b/modules/extras.py index 72cc6d1d2..50026a25c 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -34,14 +34,14 @@ class LruCache(OrderedDict): image: Image.Image info: str - def __init__(self, max_size:int = 5, *args, **kwargs): + def __init__(self, max_size: int = 5, *args, **kwargs): super().__init__(*args, **kwargs) self._max_size = max_size def get(self, key: LruCache.Key) -> LruCache.Value: ret = super().get(key) if ret is not None: - self.move_to_end(key) # Move to end of eviction list + self.move_to_end(key) # Move to end of eviction list return ret def put(self, key: LruCache.Key, value: LruCache.Value) -> None: @@ -49,10 +49,11 @@ class LruCache(OrderedDict): while len(self) > self._max_size: self.popitem(last=False) -cached_images: LruCache = LruCache(max_size = 5) + +cached_images: LruCache = LruCache(max_size=5) -def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ): +def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool): devices.torch_gc() imageArr = [] @@ -88,8 +89,8 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ else: outpath = opts.outdir_samples or opts.outdir_extras_samples - # Extra operation definitions + def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) res = Image.fromarray(restored_img) @@ -110,7 +111,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" return (res, info) - def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): upscaler = shared.sd_upscalers[scaler_index] res = upscaler.scaler.upscale(image, resize, upscaler.data_path) @@ -134,13 +134,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ upscaler_idx: int blend_alpha: float - def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: + def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: blended_result: Image.Image = None for upscaler in params: - upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - cache_key = LruCache.Key( image_hash = hash(np.array(image.getdata()).tobytes()), - info_hash = hash(info), - args_hash = hash(upscale_args + (upscaler.blend_alpha,)) ) + upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode, + upscaling_resize_w, upscaling_resize_h, upscaling_crop) + cache_key = LruCache.Key(image_hash=hash(np.array(image.getdata()).tobytes()), + info_hash=hash(info), + args_hash=hash(upscale_args + (upscaler.blend_alpha,))) cached_entry = cached_images.get(cache_key) if cached_entry is None: res = upscale(image, *upscale_args) @@ -165,15 +166,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ if upscaling_resize != 0: step_params: List[UpscaleParams] = [] - step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_1, blend_alpha=1.0 )) + step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0)) if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: - step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility ) ) + step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility)) - upscale_ops.append( partial(run_upscalers_blend, step_params) ) + upscale_ops.append(partial(run_upscalers_blend, step_params)) extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops) - for image, image_name in zip(imageArr, imageNameArr): if image is None: return outputs, "Please select an input image.", '' From d8b366146748555a18b595af400c8cb222ea0ec9 Mon Sep 17 00:00:00 2001 From: Chris OBryan <13701027+cobryan05@users.noreply.github.com> Date: Fri, 28 Oct 2022 16:55:02 -0500 Subject: [PATCH 5/5] extras: upscaler blending should not be considered in cache key --- modules/extras.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/extras.py b/modules/extras.py index 50026a25c..681d8d5a7 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -141,7 +141,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ upscaling_resize_w, upscaling_resize_h, upscaling_crop) cache_key = LruCache.Key(image_hash=hash(np.array(image.getdata()).tobytes()), info_hash=hash(info), - args_hash=hash(upscale_args + (upscaler.blend_alpha,))) + args_hash=hash(upscale_args)) cached_entry = cached_images.get(cache_key) if cached_entry is None: res = upscale(image, *upscale_args)