diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml index 437ddcef0..4e896879d 100644 --- a/configs/instruct-pix2pix.yaml +++ b/configs/instruct-pix2pix.yaml @@ -20,8 +20,7 @@ model: conditioning_key: hybrid monitor: val/loss_simple_ema scale_factor: 0.18215 - use_ema: true - load_ema: true + use_ema: false scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index 8f2e753e6..6be6ef73c 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -1,4 +1,4 @@ -from modules import extra_networks +from modules import extra_networks, shared import lora class ExtraNetworkLora(extra_networks.ExtraNetwork): @@ -6,6 +6,12 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): super().__init__('lora') def activate(self, p, params_list): + additional = shared.opts.sd_lora + + if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0: + p.all_prompts = [x + f"" for x in p.all_prompts] + params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) + names = [] multipliers = [] for params in params_list: diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 544b228d9..2e860160e 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -1,4 +1,5 @@ import torch +import gradio as gr import lora import extra_networks_lora @@ -31,5 +32,7 @@ script_callbacks.on_before_ui(before_ui) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { + "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), "lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"), + })) diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py index 54a80d368..22cabcb0f 100644 --- a/extensions-builtin/Lora/ui_extra_networks_lora.py +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -20,13 +20,14 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): preview = None for file in previews: if os.path.isfile(file): - preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file)) + preview = self.link_preview(file) break yield { "name": name, "filename": path, "preview": preview, + "search_term": self.search_terms_from_path(lora_on_disk.filename), "prompt": json.dumps(f""), "local_preview": path + ".png", } diff --git a/html/extra-networks-card.html b/html/extra-networks-card.html index aa9fca87e..8a5e2fbd2 100644 --- a/html/extra-networks-card.html +++ b/html/extra-networks-card.html @@ -4,6 +4,7 @@ + {name} diff --git a/javascript/extensions.js b/javascript/extensions.js index ac6e35b96..c593cd2e5 100644 --- a/javascript/extensions.js +++ b/javascript/extensions.js @@ -1,7 +1,8 @@ function extensions_apply(_, _){ - disable = [] - update = [] + var disable = [] + var update = [] + gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){ if(x.name.startsWith("enable_") && ! x.checked) disable.push(x.name.substr(7)) @@ -16,11 +17,24 @@ function extensions_apply(_, _){ } function extensions_check(){ + var disable = [] + + gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){ + if(x.name.startsWith("enable_") && ! x.checked) + disable.push(x.name.substr(7)) + }) + gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){ x.innerHTML = "Loading..." }) - return [] + + var id = randomId() + requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function(){ + + }) + + return [id, JSON.stringify(disable)] } function install_extension_from_index(button, url){ diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js index c5a9adb37..17bf20004 100644 --- a/javascript/extraNetworks.js +++ b/javascript/extraNetworks.js @@ -16,7 +16,7 @@ function setupExtraNetworksForTab(tabname){ searchTerm = search.value.toLowerCase() gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){ - text = elem.querySelector('.name').textContent.toLowerCase() + text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase() elem.style.display = text.indexOf(searchTerm) == -1 ? "none" : "" }) }); @@ -48,10 +48,39 @@ function setupExtraNetworks(){ onUiLoaded(setupExtraNetworks) +var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/; +var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g; + +function tryToRemoveExtraNetworkFromPrompt(textarea, text){ + var m = text.match(re_extranet) + if(! m) return false + + var partToSearch = m[1] + var replaced = false + var newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, index){ + m = found.match(re_extranet); + if(m[1] == partToSearch){ + replaced = true; + return "" + } + return found; + }) + + if(replaced){ + textarea.value = newTextareaText + return true; + } + + return false +} + function cardClicked(tabname, textToAdd, allowNegativePrompt){ var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea") - textarea.value = textarea.value + " " + textToAdd + if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){ + textarea.value = textarea.value + " " + textToAdd + } + updateInput(textarea) } @@ -67,3 +96,12 @@ function saveCardPreview(event, tabname, filename){ event.stopPropagation() event.preventDefault() } + +function extraNetworksSearchButton(tabs_id, event){ + searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea') + button = event.target + text = button.classList.contains("search-all") ? "" : button.textContent.trim() + + searchTextarea.value = text + updateInput(searchTextarea) +} \ No newline at end of file diff --git a/javascript/ui.js b/javascript/ui.js index ba72623c8..b7a8268a8 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -191,6 +191,28 @@ function confirm_clear_prompt(prompt, negative_prompt) { return [prompt, negative_prompt] } + +promptTokecountUpdateFuncs = {} + +function recalculatePromptTokens(name){ + if(promptTokecountUpdateFuncs[name]){ + promptTokecountUpdateFuncs[name]() + } +} + +function recalculate_prompts_txt2img(){ + recalculatePromptTokens('txt2img_prompt') + recalculatePromptTokens('txt2img_neg_prompt') + return args_to_array(arguments); +} + +function recalculate_prompts_img2img(){ + recalculatePromptTokens('img2img_prompt') + recalculatePromptTokens('img2img_neg_prompt') + return args_to_array(arguments); +} + + opts = {} onUiUpdate(function(){ if(Object.keys(opts).length != 0) return; @@ -232,14 +254,12 @@ onUiUpdate(function(){ return } - prompt.parentElement.insertBefore(counter, prompt) counter.classList.add("token-counter") prompt.parentElement.style.position = "relative" - textarea.addEventListener("input", function(){ - update_token_counter(id_button); - }); + promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); } + textarea.addEventListener("input", promptTokecountUpdateFuncs[id]); } registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button') @@ -273,7 +293,7 @@ onOptionsChanged(function(){ let txt2img_textarea, img2img_textarea = undefined; let wait_time = 800 -let token_timeout; +let token_timeouts = {}; function update_txt2img_tokens(...args) { update_token_counter("txt2img_token_button") @@ -290,9 +310,9 @@ function update_img2img_tokens(...args) { } function update_token_counter(button_id) { - if (token_timeout) - clearTimeout(token_timeout); - token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); + if (token_timeouts[button_id]) + clearTimeout(token_timeouts[button_id]); + token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); } function restart_reload(){ @@ -309,3 +329,10 @@ function updateInput(target){ Object.defineProperty(e, "target", {value: target}) target.dispatchEvent(e); } + + +var desiredCheckpointName = null; +function selectCheckpoint(name){ + desiredCheckpointName = name; + gradioApp().getElementById('change_checkpoint').click() +} diff --git a/launch.py b/launch.py index 370920de9..25909469c 100644 --- a/launch.py +++ b/launch.py @@ -223,6 +223,7 @@ def prepare_environment(): requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") commandline_args = os.environ.get('COMMANDLINE_ARGS', "") + xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425') gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b") @@ -282,7 +283,7 @@ def prepare_environment(): if (not is_installed("xformers") or reinstall_xformers) and xformers: if platform.system() == "Windows": if platform.python_version().startswith("3.10"): - run_pip(f"install -U -I --no-deps xformers==0.0.16rc425", "xformers") + run_pip(f"install -U -I --no-deps {xformers_package}", "xformers") else: print("Installation of xformers is not supported in this version of Python.") print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness") diff --git a/modules/devices.py b/modules/devices.py index 4687944e9..655ca1d3f 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -87,6 +87,14 @@ dtype_unet = torch.float16 unet_needs_upcast = False +def cond_cast_unet(input): + return input.to(dtype_unet) if unet_needs_upcast else input + + +def cond_cast_float(input): + return input.float() if unet_needs_upcast else input + + def randn(seed, shape): torch.manual_seed(seed) if device.type == 'mps': @@ -199,6 +207,3 @@ if has_mps(): cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) ) torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) ) - orig_narrow = torch.narrow - torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() ) - diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index ff279a1f4..d3a4d7adc 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -1,4 +1,4 @@ -from modules import extra_networks +from modules import extra_networks, shared, extra_networks from modules.hypernetworks import hypernetwork @@ -7,6 +7,12 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): super().__init__('hypernet') def activate(self, p, params_list): + additional = shared.opts.sd_hypernetwork + + if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0: + p.all_prompts = [x + f"" for x in p.all_prompts] + params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) + names = [] multipliers = [] for params in params_list: diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 773c5c0e8..fc9e17aa2 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,4 +1,5 @@ import base64 +import html import io import math import os @@ -11,19 +12,28 @@ from modules import shared, ui_tempdir, script_callbacks import tempfile from PIL import Image -re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)' +re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' re_param = re.compile(re_param_code) -re_params = re.compile(r"^(?:" + re_param_code + "){3,}$") re_imagesize = re.compile(r"^(\d+)x(\d+)$") re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$") type_of_gr_update = type(gr.update()) + paste_fields = {} -bind_list = [] +registered_param_bindings = [] + + +class ParamBinding: + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None): + self.paste_button = paste_button + self.tabname = tabname + self.source_text_component = source_text_component + self.source_image_component = source_image_component + self.source_tabname = source_tabname + self.override_settings_component = override_settings_component def reset(): paste_fields.clear() - bind_list.clear() def quote(text): @@ -75,26 +85,6 @@ def add_paste_fields(tabname, init_img, fields): modules.ui.img2img_paste_fields = fields -def integrate_settings_paste_fields(component_dict): - from modules import ui - - settings_map = { - 'CLIP_stop_at_last_layers': 'Clip skip', - 'inpainting_mask_weight': 'Conditional mask weight', - 'sd_model_checkpoint': 'Model hash', - 'eta_noise_seed_delta': 'ENSD', - 'initial_noise_multiplier': 'Noise multiplier', - } - settings_paste_fields = [ - (component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None))) - for k, v in settings_map.items() - ] - - for tabname, info in paste_fields.items(): - if info["fields"] is not None: - info["fields"] += settings_paste_fields - - def create_buttons(tabs_list): buttons = {} for tab in tabs_list: @@ -102,9 +92,60 @@ def create_buttons(tabs_list): return buttons -#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab def bind_buttons(buttons, send_image, send_generate_info): - bind_list.append([buttons, send_image, send_generate_info]) + """old function for backwards compatibility; do not use this, use register_paste_params_button""" + for tabname, button in buttons.items(): + source_text_component = send_generate_info if isinstance(send_generate_info, gr.components.Component) else None + source_tabname = send_generate_info if isinstance(send_generate_info, str) else None + + register_paste_params_button(ParamBinding(paste_button=button, tabname=tabname, source_text_component=source_text_component, source_image_component=send_image, source_tabname=source_tabname)) + + +def register_paste_params_button(binding: ParamBinding): + registered_param_bindings.append(binding) + + +def connect_paste_params_buttons(): + binding: ParamBinding + for binding in registered_param_bindings: + destination_image_component = paste_fields[binding.tabname]["init_img"] + fields = paste_fields[binding.tabname]["fields"] + + destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None) + destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None) + + if binding.source_image_component and destination_image_component: + if isinstance(binding.source_image_component, gr.Gallery): + func = send_image_and_dimensions if destination_width_component else image_from_url_text + jsfunc = "extract_image_from_gallery" + else: + func = send_image_and_dimensions if destination_width_component else lambda x: x + jsfunc = None + + binding.paste_button.click( + fn=func, + _js=jsfunc, + inputs=[binding.source_image_component], + outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component], + ) + + if binding.source_text_component is not None and fields is not None: + connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component, binding.tabname) + + if binding.source_tabname is not None and fields is not None: + paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) + binding.paste_button.click( + fn=lambda *x: x, + inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names], + outputs=[field for field, name in fields if name in paste_field_names], + ) + + binding.paste_button.click( + fn=None, + _js=f"switch_to_{binding.tabname}", + inputs=None, + outputs=None, + ) def send_image_and_dimensions(x): @@ -123,49 +164,6 @@ def send_image_and_dimensions(x): return img, w, h -def run_bind(): - for buttons, source_image_component, send_generate_info in bind_list: - for tab in buttons: - button = buttons[tab] - destination_image_component = paste_fields[tab]["init_img"] - fields = paste_fields[tab]["fields"] - - destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None) - destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None) - - if source_image_component and destination_image_component: - if isinstance(source_image_component, gr.Gallery): - func = send_image_and_dimensions if destination_width_component else image_from_url_text - jsfunc = "extract_image_from_gallery" - else: - func = send_image_and_dimensions if destination_width_component else lambda x: x - jsfunc = None - - button.click( - fn=func, - _js=jsfunc, - inputs=[source_image_component], - outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component], - ) - - if send_generate_info and fields is not None: - if send_generate_info in paste_fields: - paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) - button.click( - fn=lambda *x: x, - inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names], - outputs=[field for field, name in fields if name in paste_field_names], - ) - else: - connect_paste(button, fields, send_generate_info) - - button.click( - fn=None, - _js=f"switch_to_{tab}", - inputs=None, - outputs=None, - ) - def find_hypernetwork_key(hypernet_name, hypernet_hash=None): """Determines the config parameter name to use for the hypernet based on the parameters in the infotext. @@ -243,7 +241,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model done_with_prompt = False *lines, lastline = x.strip().split("\n") - if not re_params.match(lastline): + if len(re_param.findall(lastline)) < 3: lines.append(lastline) lastline = '' @@ -262,6 +260,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model res["Negative prompt"] = negative_prompt for k, v in re_param.findall(lastline): + v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v m = re_imagesize.match(v) if m is not None: res[k+"-1"] = m.group(1) @@ -286,7 +285,50 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model return res -def connect_paste(button, paste_fields, input_comp, jsfunc=None): +settings_map = {} + +infotext_to_setting_name_mapping = [ + ('Clip skip', 'CLIP_stop_at_last_layers', ), + ('Conditional mask weight', 'inpainting_mask_weight'), + ('Model hash', 'sd_model_checkpoint'), + ('ENSD', 'eta_noise_seed_delta'), + ('Noise multiplier', 'initial_noise_multiplier'), + ('Eta', 'eta_ancestral'), + ('Eta DDIM', 'eta_ddim'), + ('Discard penultimate sigma', 'always_discard_next_to_last_sigma') +] + + +def create_override_settings_dict(text_pairs): + """creates processing's override_settings parameters from gradio's multiselect + + Example input: + ['Clip skip: 2', 'Model hash: e6e99610c4', 'ENSD: 31337'] + + Example output: + {'CLIP_stop_at_last_layers': 2, 'sd_model_checkpoint': 'e6e99610c4', 'eta_noise_seed_delta': 31337} + """ + + res = {} + + params = {} + for pair in text_pairs: + k, v = pair.split(":", maxsplit=1) + + params[k] = v.strip() + + for param_name, setting_name in infotext_to_setting_name_mapping: + value = params.get(param_name, None) + + if value is None: + continue + + res[setting_name] = shared.opts.cast_value(setting_name, value) + + return res + + +def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname): def paste_func(prompt): if not prompt and not shared.cmd_opts.hide_ui_dir_config: filename = os.path.join(data_path, "params.txt") @@ -323,9 +365,35 @@ def connect_paste(button, paste_fields, input_comp, jsfunc=None): return res + if override_settings_component is not None: + def paste_settings(params): + vals = {} + + for param_name, setting_name in infotext_to_setting_name_mapping: + v = params.get(param_name, None) + if v is None: + continue + + if setting_name == "sd_model_checkpoint" and shared.opts.disable_weights_auto_swap: + continue + + v = shared.opts.cast_value(setting_name, v) + current_value = getattr(shared.opts, setting_name, None) + + if v == current_value: + continue + + vals[param_name] = v + + vals_pairs = [f"{k}: {v}" for k, v in vals.items()] + + return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0) + + paste_fields = paste_fields + [(override_settings_component, paste_settings)] + button.click( fn=paste_func, - _js=jsfunc, + _js=f"recalculate_prompts_{tabname}", inputs=[input_comp], outputs=[x[0] for x in paste_fields], ) diff --git a/modules/images.py b/modules/images.py index 0bc3d5241..ae3cdaf4a 100644 --- a/modules/images.py +++ b/modules/images.py @@ -36,6 +36,8 @@ def image_grid(imgs, batch_size=1, rows=None): else: rows = math.sqrt(len(imgs)) rows = round(rows) + if rows > len(imgs): + rows = len(imgs) cols = math.ceil(len(imgs) / rows) diff --git a/modules/img2img.py b/modules/img2img.py index fe9447c7e..f813299c9 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -7,6 +7,7 @@ import numpy as np from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops from modules import devices, sd_samplers +from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state import modules.shared as shared @@ -21,8 +22,10 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): images = shared.listfiles(input_dir) - inpaint_masks = shared.listfiles(inpaint_mask_dir) - is_inpaint_batch = inpaint_mask_dir and len(inpaint_masks) > 0 + is_inpaint_batch = False + if inpaint_mask_dir: + inpaint_masks = shared.listfiles(inpaint_mask_dir) + is_inpaint_batch = len(inpaint_masks) > 0 if is_inpaint_batch: print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") @@ -73,7 +76,9 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): + override_settings = create_override_settings_dict(override_settings_texts) + is_batch = mode == 5 if mode == 0: # img2img @@ -140,6 +145,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s inpaint_full_res=inpaint_full_res, inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, + override_settings=override_settings, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/processing.py b/modules/processing.py index 5072fc409..e544c2e16 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -173,8 +173,7 @@ class StableDiffusionProcessing: midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_vae) if devices.unet_needs_upcast else source_image)) - conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), size=conditioning_image.shape[2:], @@ -218,7 +217,7 @@ class StableDiffusionProcessing: ) # Encode the new masked image using first stage of network. - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_vae) if devices.unet_needs_upcast else conditioning_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) @@ -229,16 +228,18 @@ class StableDiffusionProcessing: return image_conditioning def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): + source_image = devices.cond_cast_float(source_image) + # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # identify itself with a field common to all models. The conditioning_key is also hybrid. if isinstance(self.sd_model, LatentDepth2ImageDiffusion): - return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image) + return self.depth2img_image_conditioning(source_image) if self.sd_model.cond_stage_key == "edit": return self.edit_image_conditioning(source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: - return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask) + return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) @@ -418,7 +419,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see def decode_first_stage(model, x): with devices.autocast(disable=x.dtype == devices.dtype_vae): - x = model.decode_first_stage(x.to(devices.dtype_vae) if devices.unet_needs_upcast else x) + x = model.decode_first_stage(x) return x @@ -449,14 +450,11 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), - "Batch size": (None if p.batch_size < 2 else p.batch_size), - "Batch pos": (None if p.batch_size < 2 else position_in_batch), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, - "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, } @@ -1007,7 +1005,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(device=shared.device, dtype=devices.dtype_vae if devices.unet_needs_upcast else None) + image = image.to(shared.device) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py index 47f702513..aad4a6298 100644 --- a/modules/realesrgan_model.py +++ b/modules/realesrgan_model.py @@ -46,7 +46,7 @@ class UpscalerRealESRGAN(Upscaler): scale=info.scale, model_path=info.local_data_path, model=info.model(), - half=not cmd_opts.no_half, + half=not cmd_opts.no_half and not cmd_opts.upcast_sampling, tile=opts.ESRGAN_tile, tile_pad=opts.ESRGAN_tile_overlap, ) diff --git a/modules/scripts.py b/modules/scripts.py index 6e9dc0c03..24056a12f 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -345,6 +345,20 @@ class ScriptRunner: outputs=[script.group for script in self.selectable_scripts] ) + self.script_load_ctr = 0 + def onload_script_visibility(params): + title = params.get('Script', None) + if title: + title_index = self.titles.index(title) + visibility = title_index == self.script_load_ctr + self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles) + return gr.update(visible=visibility) + else: + return gr.update(visible=False) + + self.infotext_fields.append( (dropdown, lambda x: gr.update(value=x.get('Script', 'None'))) ) + self.infotext_fields.extend( [(script.group, onload_script_visibility) for script in self.selectable_scripts] ) + return inputs def run(self, p, *args): diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f9652d215..8fdc59909 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -131,6 +131,8 @@ class StableDiffusionModelHijack: m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped m.cond_stage_model = m.cond_stage_model.wrapped + undo_optimizations() + self.apply_circular(False) self.layers = None self.clip = None @@ -171,7 +173,7 @@ class EmbeddingsWithFixes(torch.nn.Module): vecs = [] for fixes, tensor in zip(batch_fixes, inputs_embeds): for offset, embedding in fixes: - emb = embedding.vec + emb = devices.cond_cast_unet(embedding.vec) emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]) diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index a6ee577cb..45cf2b18e 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -55,8 +55,14 @@ class GELUHijack(torch.nn.GELU, torch.nn.Module): unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast) -CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).to(devices.dtype_unet), unet_needs_upcast) +CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast) if version.parse(torch.__version__) <= version.parse("1.13.1"): CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast) CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast) CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU) + +first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16 +first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs) +CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond) +CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond) +CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond) diff --git a/modules/sd_models.py b/modules/sd_models.py index b2d48a510..300387a9b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -41,6 +41,7 @@ class CheckpointInfo: name = name[1:] self.name = name + self.name_for_extra = os.path.splitext(os.path.basename(filename))[0] self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] self.hash = model_hash(filename) @@ -231,12 +232,10 @@ def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer): def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer): - title = checkpoint_info.title sd_model_hash = checkpoint_info.calculate_shorthash() timer.record("calculate hash") - if checkpoint_info.title != title: - shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title + shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title if state_dict is None: state_dict = get_checkpoint_state_dict(checkpoint_info, timer) diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 00217990b..91c217004 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -1,7 +1,9 @@ import re import os -from modules import shared, paths +import torch + +from modules import shared, paths, sd_disable_initialization sd_configs_path = shared.sd_configs_path sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") @@ -16,12 +18,51 @@ config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml" config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") -re_parametrization_v = re.compile(r'-v\b') + +def is_using_v_parameterization_for_sd2(state_dict): + """ + Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome. + """ + + import ldm.modules.diffusionmodules.openaimodel + from modules import devices + + device = devices.cpu + + with sd_disable_initialization.DisableInitialization(): + unet = ldm.modules.diffusionmodules.openaimodel.UNetModel( + use_checkpoint=True, + use_fp16=False, + image_size=32, + in_channels=4, + out_channels=4, + model_channels=320, + attention_resolutions=[4, 2, 1], + num_res_blocks=2, + channel_mult=[1, 2, 4, 4], + num_head_channels=64, + use_spatial_transformer=True, + use_linear_in_transformer=True, + transformer_depth=1, + context_dim=1024, + legacy=False + ) + unet.eval() + + with torch.no_grad(): + unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k} + unet.load_state_dict(unet_sd, strict=True) + unet.to(device=device, dtype=torch.float) + + test_cond = torch.ones((1, 2, 1024), device=device) * 0.5 + x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5 + + out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item() + + return out < -1 def guess_model_config_from_state_dict(sd, filename): - fn = os.path.basename(filename) - sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) @@ -31,7 +72,7 @@ def guess_model_config_from_state_dict(sd, filename): if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: if diffusion_model_input.shape[1] == 9: return config_sd2_inpainting - elif re.search(re_parametrization_v, fn): + elif is_using_v_parameterization_for_sd2(sd): return config_sd2v else: return config_sd2 diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index a7910b56e..28c2136fe 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,53 +1,11 @@ -from collections import namedtuple, deque -import numpy as np -from math import floor -import torch -import tqdm -from PIL import Image -import inspect -import k_diffusion.sampling -import torchsde._brownian.brownian_interval -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms -from modules import prompt_parser, devices, processing, images, sd_vae_approx +from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared -from modules.shared import opts, cmd_opts, state -import modules.shared as shared -from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback - - -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) - -samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), - ('Euler', 'sample_euler', ['k_euler'], {}), - ('LMS', 'sample_lms', ['k_lms'], {}), - ('Heun', 'sample_heun', ['k_heun'], {}), - ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), - ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), - ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), - ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), - ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), - ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), - ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), - ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), -] - -samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) - for label, funcname, aliases, options in samplers_k_diffusion - if hasattr(k_diffusion.sampling, funcname) -] +# imports for functions that previously were here and are used by other modules +from modules.sd_samplers_common import samples_to_image_grid, sample_to_image all_samplers = [ - *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), + *sd_samplers_kdiffusion.samplers_data_k_diffusion, + *sd_samplers_compvis.samplers_data_compvis, ] all_samplers_map = {x.name: x for x in all_samplers} @@ -73,8 +31,8 @@ def create_sampler(name, model): def set_samplers(): global samplers, samplers_for_img2img - hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS']) + hidden = set(shared.opts.hide_samplers) + hidden_img2img = set(shared.opts.hide_samplers + ['PLMS']) samplers = [x for x in all_samplers if x.name not in hidden] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] @@ -87,466 +45,3 @@ def set_samplers(): set_samplers() - -sampler_extra_params = { - 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], -} - - -def setup_img2img_steps(p, steps=None): - if opts.img2img_fix_steps or steps is not None: - requested_steps = (steps or p.steps) - steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 - t_enc = requested_steps - 1 - else: - steps = p.steps - t_enc = int(min(p.denoising_strength, 0.999) * steps) - - return steps, t_enc - - -approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} - - -def single_sample_to_image(sample, approximation=None): - if approximation is None: - approximation = approximation_indexes.get(opts.show_progress_type, 0) - - if approximation == 2: - x_sample = sd_vae_approx.cheap_approximation(sample) - elif approximation == 1: - x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() - else: - x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] - - x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - return Image.fromarray(x_sample) - - -def sample_to_image(samples, index=0, approximation=None): - return single_sample_to_image(samples[index], approximation) - - -def samples_to_image_grid(samples, approximation=None): - return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) - - -def store_latent(decoded): - state.current_latent = decoded - - if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: - if not shared.parallel_processing_allowed: - shared.state.assign_current_image(sample_to_image(decoded)) - - -class InterruptedException(BaseException): - pass - - -class VanillaStableDiffusionSampler: - def __init__(self, constructor, sd_model): - self.sampler = constructor(sd_model) - self.is_plms = hasattr(self.sampler, 'p_sample_plms') - self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim - self.mask = None - self.nmask = None - self.init_latent = None - self.sampler_noises = None - self.step = 0 - self.stop_at = None - self.eta = None - self.default_eta = 0.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def number_of_needed_noises(self, p): - return 0 - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): - if state.interrupted or state.skipped: - raise InterruptedException - - if self.stop_at is not None and self.step > self.stop_at: - raise InterruptedException - - # Have to unwrap the inpainting conditioning here to perform pre-processing - image_conditioning = None - if isinstance(cond, dict): - image_conditioning = cond["c_concat"][0] - cond = cond["c_crossattn"][0] - unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - - assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' - cond = tensor - - # for DDIM, shapes must match, we can't just process cond and uncond independently; - # filling unconditional_conditioning with repeats of the last vector to match length is - # not 100% correct but should work well enough - if unconditional_conditioning.shape[1] < cond.shape[1]: - last_vector = unconditional_conditioning[:, -1:] - last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) - unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) - elif unconditional_conditioning.shape[1] > cond.shape[1]: - unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] - - if self.mask is not None: - img_orig = self.sampler.model.q_sample(self.init_latent, ts) - x_dec = img_orig * self.mask + self.nmask * x_dec - - # Wrap the image conditioning back up since the DDIM code can accept the dict directly. - # Note that they need to be lists because it just concatenates them later. - if image_conditioning is not None: - cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) - - if self.mask is not None: - self.last_latent = self.init_latent * self.mask + self.nmask * res[1] - else: - self.last_latent = res[1] - - store_latent(self.last_latent) - - self.step += 1 - state.sampling_step = self.step - shared.total_tqdm.update() - - return res - - def initialize(self, p): - self.eta = p.eta if p.eta is not None else opts.eta_ddim - - for fieldname in ['p_sample_ddim', 'p_sample_plms']: - if hasattr(self.sampler, fieldname): - setattr(self.sampler, fieldname, self.p_sample_ddim_hook) - - self.mask = p.mask if hasattr(p, 'mask') else None - self.nmask = p.nmask if hasattr(p, 'nmask') else None - - def adjust_steps_if_invalid(self, p, num_steps): - if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): - valid_step = 999 / (1000 // num_steps) - if valid_step == floor(valid_step): - return int(valid_step) + 1 - - return num_steps - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - steps = self.adjust_steps_if_invalid(p, steps) - self.initialize(p) - - self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) - x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) - - self.init_latent = x - self.last_latent = x - self.step = 0 - - # Wrap the conditioning models with additional image conditioning for inpainting model - if image_conditioning is not None: - conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - self.initialize(p) - - self.init_latent = None - self.last_latent = x - self.step = 0 - - steps = self.adjust_steps_if_invalid(p, steps or p.steps) - - # Wrap the conditioning models with additional image conditioning for inpainting model - # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape - if image_conditioning is not None: - conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} - unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} - - samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) - - return samples_ddim - - -class CFGDenoiser(torch.nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - self.mask = None - self.nmask = None - self.init_latent = None - self.step = 0 - - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): - denoised_uncond = x_out[-uncond.shape[0]:] - denoised = torch.clone(denoised_uncond) - - for i, conds in enumerate(conds_list): - for cond_index, weight in conds: - denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) - - return denoised - - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): - if state.interrupted or state.skipped: - raise InterruptedException - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - - batch_size = len(conds_list) - repeats = [len(conds_list[i]) for i in range(batch_size)] - - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) - cfg_denoiser_callback(denoiser_params) - x_in = denoiser_params.x - image_cond_in = denoiser_params.image_cond - sigma_in = denoiser_params.sigma - - if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) - - if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) - else: - x_out = torch.zeros_like(x_in) - for batch_offset in range(0, x_out.shape[0], batch_size): - a = batch_offset - b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) - else: - x_out = torch.zeros_like(x_in) - batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size - for batch_offset in range(0, tensor.shape[0], batch_size): - a = batch_offset - b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) - - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) - - devices.test_for_nans(x_out, "unet") - - if opts.live_preview_content == "Prompt": - store_latent(x_out[0:uncond.shape[0]]) - elif opts.live_preview_content == "Negative prompt": - store_latent(x_out[-uncond.shape[0]:]) - - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - - if self.mask is not None: - denoised = self.init_latent * self.mask + self.nmask * denoised - - self.step += 1 - - return denoised - - -class TorchHijack: - def __init__(self, sampler_noises): - # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based - # implementation. - self.sampler_noises = deque(sampler_noises) - - def __getattr__(self, item): - if item == 'randn_like': - return self.randn_like - - if hasattr(torch, item): - return getattr(torch, item) - - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) - - def randn_like(self, x): - if self.sampler_noises: - noise = self.sampler_noises.popleft() - if noise.shape == x.shape: - return noise - - if x.device.type == 'mps': - return torch.randn_like(x, device=devices.cpu).to(x.device) - else: - return torch.randn_like(x) - - -# MPS fix for randn in torchsde -def torchsde_randn(size, dtype, device, seed): - if device.type == 'mps': - generator = torch.Generator(devices.cpu).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) - else: - generator = torch.Generator(device).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=device, generator=generator) - - -torchsde._brownian.brownian_interval._randn = torchsde_randn - - -class KDiffusionSampler: - def __init__(self, funcname, sd_model): - denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser - - self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.funcname = funcname - self.func = getattr(k_diffusion.sampling, self.funcname) - self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) - self.sampler_noises = None - self.stop_at = None - self.eta = None - self.default_eta = 1.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def callback_state(self, d): - step = d['i'] - latent = d["denoised"] - if opts.live_preview_content == "Combined": - store_latent(latent) - self.last_latent = latent - - if self.stop_at is not None and step > self.stop_at: - raise InterruptedException - - state.sampling_step = step - shared.total_tqdm.update() - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def number_of_needed_noises(self, p): - return p.steps - - def initialize(self, p): - self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None - self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None - self.model_wrap_cfg.step = 0 - self.eta = p.eta or opts.eta_ancestral - - k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) - - extra_params_kwargs = {} - for param_name in self.extra_params: - if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: - extra_params_kwargs[param_name] = getattr(p, param_name) - - if 'eta' in inspect.signature(self.func).parameters: - extra_params_kwargs['eta'] = self.eta - - return extra_params_kwargs - - def get_sigmas(self, p, steps): - discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) - if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: - discard_next_to_last_sigma = True - p.extra_generation_params["Discard penultimate sigma"] = True - - steps += 1 if discard_next_to_last_sigma else 0 - - if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': - sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) - - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) - else: - sigmas = self.model_wrap.get_sigmas(steps) - - if discard_next_to_last_sigma: - sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) - - return sigmas - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - - sigmas = self.get_sigmas(p, steps) - - sigma_sched = sigmas[steps - t_enc - 1:] - xi = x + noise * sigma_sched[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last - extra_params_kwargs['sigma_min'] = sigma_sched[-2] - if 'sigma_max' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_max'] = sigma_sched[0] - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = len(sigma_sched) - 1 - if 'sigma_sched' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_sched'] = sigma_sched - if 'sigmas' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigmas'] = sigma_sched - - self.model_wrap_cfg.init_latent = x - self.last_latent = x - - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): - steps = steps or p.steps - - sigmas = self.get_sigmas(p, steps) - - x = x * sigmas[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() - extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = steps - else: - extra_params_kwargs['sigmas'] = sigmas - - self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py new file mode 100644 index 000000000..3c03d442e --- /dev/null +++ b/modules/sd_samplers_common.py @@ -0,0 +1,78 @@ +from collections import namedtuple +import numpy as np +import torch +from PIL import Image +import torchsde._brownian.brownian_interval +from modules import devices, processing, images, sd_vae_approx + +from modules.shared import opts, state +import modules.shared as shared + +SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) + + +def setup_img2img_steps(p, steps=None): + if opts.img2img_fix_steps or steps is not None: + requested_steps = (steps or p.steps) + steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 + t_enc = requested_steps - 1 + else: + steps = p.steps + t_enc = int(min(p.denoising_strength, 0.999) * steps) + + return steps, t_enc + + +approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} + + +def single_sample_to_image(sample, approximation=None): + if approximation is None: + approximation = approximation_indexes.get(opts.show_progress_type, 0) + + if approximation == 2: + x_sample = sd_vae_approx.cheap_approximation(sample) + elif approximation == 1: + x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() + else: + x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] + + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + return Image.fromarray(x_sample) + + +def sample_to_image(samples, index=0, approximation=None): + return single_sample_to_image(samples[index], approximation) + + +def samples_to_image_grid(samples, approximation=None): + return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) + + +def store_latent(decoded): + state.current_latent = decoded + + if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: + if not shared.parallel_processing_allowed: + shared.state.assign_current_image(sample_to_image(decoded)) + + +class InterruptedException(BaseException): + pass + + +# MPS fix for randn in torchsde +# XXX move this to separate file for MPS +def torchsde_randn(size, dtype, device, seed): + if device.type == 'mps': + generator = torch.Generator(devices.cpu).manual_seed(int(seed)) + return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) + else: + generator = torch.Generator(device).manual_seed(int(seed)) + return torch.randn(size, dtype=dtype, device=device, generator=generator) + + +torchsde._brownian.brownian_interval._randn = torchsde_randn + diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py new file mode 100644 index 000000000..d03131cd4 --- /dev/null +++ b/modules/sd_samplers_compvis.py @@ -0,0 +1,160 @@ +import math +import ldm.models.diffusion.ddim +import ldm.models.diffusion.plms + +import numpy as np +import torch + +from modules.shared import state +from modules import sd_samplers_common, prompt_parser, shared + + +samplers_data_compvis = [ + sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), +] + + +class VanillaStableDiffusionSampler: + def __init__(self, constructor, sd_model): + self.sampler = constructor(sd_model) + self.is_plms = hasattr(self.sampler, 'p_sample_plms') + self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim + self.mask = None + self.nmask = None + self.init_latent = None + self.sampler_noises = None + self.step = 0 + self.stop_at = None + self.eta = None + self.config = None + self.last_latent = None + + self.conditioning_key = sd_model.model.conditioning_key + + def number_of_needed_noises(self, p): + return 0 + + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except sd_samplers_common.InterruptedException: + return self.last_latent + + def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): + if state.interrupted or state.skipped: + raise sd_samplers_common.InterruptedException + + if self.stop_at is not None and self.step > self.stop_at: + raise sd_samplers_common.InterruptedException + + # Have to unwrap the inpainting conditioning here to perform pre-processing + image_conditioning = None + if isinstance(cond, dict): + image_conditioning = cond["c_concat"][0] + cond = cond["c_crossattn"][0] + unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) + unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) + + assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' + cond = tensor + + # for DDIM, shapes must match, we can't just process cond and uncond independently; + # filling unconditional_conditioning with repeats of the last vector to match length is + # not 100% correct but should work well enough + if unconditional_conditioning.shape[1] < cond.shape[1]: + last_vector = unconditional_conditioning[:, -1:] + last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) + unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) + elif unconditional_conditioning.shape[1] > cond.shape[1]: + unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] + + if self.mask is not None: + img_orig = self.sampler.model.q_sample(self.init_latent, ts) + x_dec = img_orig * self.mask + self.nmask * x_dec + + # Wrap the image conditioning back up since the DDIM code can accept the dict directly. + # Note that they need to be lists because it just concatenates them later. + if image_conditioning is not None: + cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} + unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} + + res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) + + if self.mask is not None: + self.last_latent = self.init_latent * self.mask + self.nmask * res[1] + else: + self.last_latent = res[1] + + sd_samplers_common.store_latent(self.last_latent) + + self.step += 1 + state.sampling_step = self.step + shared.total_tqdm.update() + + return res + + def initialize(self, p): + self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim + if self.eta != 0.0: + p.extra_generation_params["Eta DDIM"] = self.eta + + for fieldname in ['p_sample_ddim', 'p_sample_plms']: + if hasattr(self.sampler, fieldname): + setattr(self.sampler, fieldname, self.p_sample_ddim_hook) + + self.mask = p.mask if hasattr(p, 'mask') else None + self.nmask = p.nmask if hasattr(p, 'nmask') else None + + def adjust_steps_if_invalid(self, p, num_steps): + if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): + valid_step = 999 / (1000 // num_steps) + if valid_step == math.floor(valid_step): + return int(valid_step) + 1 + + return num_steps + + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) + steps = self.adjust_steps_if_invalid(p, steps) + self.initialize(p) + + self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) + x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) + + self.init_latent = x + self.last_latent = x + self.step = 0 + + # Wrap the conditioning models with additional image conditioning for inpainting model + if image_conditioning is not None: + conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} + unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} + + samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) + + return samples + + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + self.initialize(p) + + self.init_latent = None + self.last_latent = x + self.step = 0 + + steps = self.adjust_steps_if_invalid(p, steps or p.steps) + + # Wrap the conditioning models with additional image conditioning for inpainting model + # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape + if image_conditioning is not None: + conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} + unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} + + samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) + + return samples_ddim diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py new file mode 100644 index 000000000..aa7f106b3 --- /dev/null +++ b/modules/sd_samplers_kdiffusion.py @@ -0,0 +1,298 @@ +from collections import deque +import torch +import inspect +import k_diffusion.sampling +from modules import prompt_parser, devices, sd_samplers_common + +from modules.shared import opts, state +import modules.shared as shared +from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback + +samplers_k_diffusion = [ + ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), + ('Euler', 'sample_euler', ['k_euler'], {}), + ('LMS', 'sample_lms', ['k_lms'], {}), + ('Heun', 'sample_heun', ['k_heun'], {}), + ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), + ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), + ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), + ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), + ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), + ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), + ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), + ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), + ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), + ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), + ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), + ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), + ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), +] + +samplers_data_k_diffusion = [ + sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) + for label, funcname, aliases, options in samplers_k_diffusion + if hasattr(k_diffusion.sampling, funcname) +] + +sampler_extra_params = { + 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], + 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], + 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], +} + + +class CFGDenoiser(torch.nn.Module): + """ + Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) + that can take a noisy picture and produce a noise-free picture using two guidances (prompts) + instead of one. Originally, the second prompt is just an empty string, but we use non-empty + negative prompt. + """ + + def __init__(self, model): + super().__init__() + self.inner_model = model + self.mask = None + self.nmask = None + self.init_latent = None + self.step = 0 + + def combine_denoised(self, x_out, conds_list, uncond, cond_scale): + denoised_uncond = x_out[-uncond.shape[0]:] + denoised = torch.clone(denoised_uncond) + + for i, conds in enumerate(conds_list): + for cond_index, weight in conds: + denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) + + return denoised + + def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): + if state.interrupted or state.skipped: + raise sd_samplers_common.InterruptedException + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) + uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) + + batch_size = len(conds_list) + repeats = [len(conds_list[i]) for i in range(batch_size)] + + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + + denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) + cfg_denoiser_callback(denoiser_params) + x_in = denoiser_params.x + image_cond_in = denoiser_params.image_cond + sigma_in = denoiser_params.sigma + + if tensor.shape[1] == uncond.shape[1]: + cond_in = torch.cat([tensor, uncond]) + + if shared.batch_cond_uncond: + x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) + else: + x_out = torch.zeros_like(x_in) + for batch_offset in range(0, x_out.shape[0], batch_size): + a = batch_offset + b = a + batch_size + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) + else: + x_out = torch.zeros_like(x_in) + batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size + for batch_offset in range(0, tensor.shape[0], batch_size): + a = batch_offset + b = min(a + batch_size, tensor.shape[0]) + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) + + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) + + devices.test_for_nans(x_out, "unet") + + if opts.live_preview_content == "Prompt": + sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) + elif opts.live_preview_content == "Negative prompt": + sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) + + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + + if self.mask is not None: + denoised = self.init_latent * self.mask + self.nmask * denoised + + self.step += 1 + + return denoised + + +class TorchHijack: + def __init__(self, sampler_noises): + # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based + # implementation. + self.sampler_noises = deque(sampler_noises) + + def __getattr__(self, item): + if item == 'randn_like': + return self.randn_like + + if hasattr(torch, item): + return getattr(torch, item) + + raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) + + def randn_like(self, x): + if self.sampler_noises: + noise = self.sampler_noises.popleft() + if noise.shape == x.shape: + return noise + + if x.device.type == 'mps': + return torch.randn_like(x, device=devices.cpu).to(x.device) + else: + return torch.randn_like(x) + + +class KDiffusionSampler: + def __init__(self, funcname, sd_model): + denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser + + self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) + self.funcname = funcname + self.func = getattr(k_diffusion.sampling, self.funcname) + self.extra_params = sampler_extra_params.get(funcname, []) + self.model_wrap_cfg = CFGDenoiser(self.model_wrap) + self.sampler_noises = None + self.stop_at = None + self.eta = None + self.config = None + self.last_latent = None + + self.conditioning_key = sd_model.model.conditioning_key + + def callback_state(self, d): + step = d['i'] + latent = d["denoised"] + if opts.live_preview_content == "Combined": + sd_samplers_common.store_latent(latent) + self.last_latent = latent + + if self.stop_at is not None and step > self.stop_at: + raise sd_samplers_common.InterruptedException + + state.sampling_step = step + shared.total_tqdm.update() + + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except sd_samplers_common.InterruptedException: + return self.last_latent + + def number_of_needed_noises(self, p): + return p.steps + + def initialize(self, p): + self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None + self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None + self.model_wrap_cfg.step = 0 + self.eta = p.eta if p.eta is not None else opts.eta_ancestral + + k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) + + extra_params_kwargs = {} + for param_name in self.extra_params: + if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: + extra_params_kwargs[param_name] = getattr(p, param_name) + + if 'eta' in inspect.signature(self.func).parameters: + if self.eta != 1.0: + p.extra_generation_params["Eta"] = self.eta + + extra_params_kwargs['eta'] = self.eta + + return extra_params_kwargs + + def get_sigmas(self, p, steps): + discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) + if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: + discard_next_to_last_sigma = True + p.extra_generation_params["Discard penultimate sigma"] = True + + steps += 1 if discard_next_to_last_sigma else 0 + + if p.sampler_noise_scheduler_override: + sigmas = p.sampler_noise_scheduler_override(steps) + elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': + sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) + + sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) + else: + sigmas = self.model_wrap.get_sigmas(steps) + + if discard_next_to_last_sigma: + sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) + + return sigmas + + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) + + sigmas = self.get_sigmas(p, steps) + + sigma_sched = sigmas[steps - t_enc - 1:] + xi = x + noise * sigma_sched[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last + extra_params_kwargs['sigma_min'] = sigma_sched[-2] + if 'sigma_max' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_max'] = sigma_sched[0] + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = len(sigma_sched) - 1 + if 'sigma_sched' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_sched'] = sigma_sched + if 'sigmas' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigmas'] = sigma_sched + + self.model_wrap_cfg.init_latent = x + self.last_latent = x + + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale + }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + return samples + + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): + steps = steps or p.steps + + sigmas = self.get_sigmas(p, steps) + + x = x * sigmas[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() + extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = steps + else: + extra_params_kwargs['sigmas'] = sigmas + + self.last_latent = x + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale + }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + return samples + diff --git a/modules/shared.py b/modules/shared.py index 474fcc429..96a2572fe 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -127,12 +127,13 @@ restricted_opts = { ui_reorder_categories = [ "inpaint", "sampler", + "checkboxes", + "hires_fix", "dimensions", "cfg", "seed", - "checkboxes", - "hires_fix", "batch", + "override_settings", "scripts", ] @@ -346,10 +347,10 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), { })) options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { - "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"), - "grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"), + "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), + "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), - "directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs), + "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs), "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), })) @@ -405,7 +406,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), - "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), })) @@ -431,7 +431,9 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"), })) options_templates.update(options_section(('extra_networks', "Extra Networks"), { - "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, { "choices": ["cards", "thumbs"] }), + "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}), + "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { @@ -439,7 +441,7 @@ options_templates.update(options_section(('ui', "User interface"), { "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), - "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), + "disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), "font": OptionInfo("", "Font for image grids that have text"), @@ -604,11 +606,37 @@ class Options: self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} + def cast_value(self, key, value): + """casts an arbitrary to the same type as this setting's value with key + Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str) + """ + + if value is None: + return None + + default_value = self.data_labels[key].default + if default_value is None: + default_value = getattr(self, key, None) + if default_value is None: + return None + + expected_type = type(default_value) + if expected_type == bool and value == "False": + value = False + else: + value = expected_type(value) + + return value + + opts = Options() if os.path.exists(config_filename): opts.load(config_filename) +settings_components = None +"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings""" + latent_upscale_default_mode = "Latent" latent_upscale_modes = { "Latent": {"mode": "bilinear", "antialias": False}, diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 6cf00e65d..a1a406c22 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -112,6 +112,7 @@ class EmbeddingDatabase: self.skipped_embeddings = {} self.expected_shape = -1 self.embedding_dirs = {} + self.previously_displayed_embeddings = () def add_embedding_dir(self, path): self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) @@ -228,9 +229,12 @@ class EmbeddingDatabase: self.load_from_dir(embdir) embdir.update() - print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") - if len(self.skipped_embeddings) > 0: - print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") + displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys())) + if self.previously_displayed_embeddings != displayed_embeddings: + self.previously_displayed_embeddings = displayed_embeddings + print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") + if len(self.skipped_embeddings) > 0: + print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") def find_embedding_at_position(self, tokens, offset): token = tokens[offset] diff --git a/modules/txt2img.py b/modules/txt2img.py index e945fd698..16841d0f2 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,5 +1,6 @@ import modules.scripts from modules import sd_samplers +from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, cmd_opts @@ -8,7 +9,9 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, *args): +def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args): + override_settings = create_override_settings_dict(override_settings_texts) + p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -38,6 +41,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step hr_second_pass_steps=hr_second_pass_steps, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y, + override_settings=override_settings, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index 9f4cfda1a..f910c5823 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -380,6 +380,7 @@ def apply_setting(key, value): opts.save(shared.config_filename) return getattr(opts, key) + def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def refresh(): refresh_method() @@ -433,6 +434,18 @@ def get_value_for_setting(key): return gr.update(value=value, **args) +def create_override_settings_dropdown(tabname, row): + dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True) + + dropdown.change( + fn=lambda x: gr.Dropdown.update(visible=len(x) > 0), + inputs=[dropdown], + outputs=[dropdown], + ) + + return dropdown + + def create_ui(): import modules.img2img import modules.txt2img @@ -503,6 +516,10 @@ def create_ui(): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") + elif category == "override_settings": + with FormRow(elem_id="txt2img_override_settings_row") as row: + override_settings = create_override_settings_dropdown('txt2img', row) + elif category == "scripts": with FormGroup(elem_id="txt2img_script_container"): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() @@ -524,7 +541,6 @@ def create_ui(): ) txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) - parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) @@ -555,6 +571,7 @@ def create_ui(): hr_second_pass_steps, hr_resize_x, hr_resize_y, + override_settings, ] + custom_inputs, outputs=[ @@ -615,6 +632,9 @@ def create_ui(): *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, override_settings_component=override_settings, + )) txt2img_preview_params = [ txt2img_prompt, @@ -762,6 +782,10 @@ def create_ui(): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") + elif category == "override_settings": + with FormRow(elem_id="img2img_override_settings_row") as row: + override_settings = create_override_settings_dropdown('img2img', row) + elif category == "scripts": with FormGroup(elem_id="img2img_script_container"): custom_inputs = modules.scripts.scripts_img2img.setup_ui() @@ -796,7 +820,6 @@ def create_ui(): ) img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) - parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) @@ -849,7 +872,8 @@ def create_ui(): inpainting_mask_invert, img2img_batch_input_dir, img2img_batch_output_dir, - img2img_batch_inpaint_mask_dir + img2img_batch_inpaint_mask_dir, + override_settings, ] + custom_inputs, outputs=[ img2img_gallery, @@ -937,6 +961,9 @@ def create_ui(): ] parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields) parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields) + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, override_settings_component=override_settings, + )) modules.scripts.scripts_current = None @@ -954,7 +981,11 @@ def create_ui(): html2 = gr.HTML() with gr.Row(): buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) - parameters_copypaste.bind_buttons(buttons, image, generation_info) + + for tabname, button in buttons.items(): + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=button, tabname=tabname, source_text_component=generation_info, source_image_component=image, + )) image.change( fn=wrap_gradio_call(modules.extras.run_pnginfo), @@ -1363,6 +1394,7 @@ def create_ui(): components = [] component_dict = {} + shared.settings_components = component_dict script_callbacks.ui_settings_callback() opts.reorder() @@ -1529,8 +1561,7 @@ def create_ui(): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component - parameters_copypaste.integrate_settings_paste_fields(component_dict) - parameters_copypaste.run_bind() + parameters_copypaste.connect_paste_params_buttons() with gr.Tabs(elem_id="tabs") as tabs: for interface, label, ifid in interfaces: @@ -1560,6 +1591,14 @@ def create_ui(): outputs=[component, text_settings], ) + button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False) + button_set_checkpoint.click( + fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'), + _js="function(v){ var res = desiredCheckpointName; desiredCheckpointName = ''; return [res || v, null]; }", + inputs=[component_dict['sd_model_checkpoint'], dummy_component], + outputs=[component_dict['sd_model_checkpoint'], text_settings], + ) + component_keys = [k for k in opts.data_labels.keys() if k in component_dict] def get_settings_values(): @@ -1692,14 +1731,14 @@ def create_ui(): def reload_javascript(): - head = f'\n' + head = f'\n' inline = f"{localization.localization_js(shared.opts.localization)};" if cmd_opts.theme is not None: inline += f"set_theme('{cmd_opts.theme}');" for script in modules.scripts.list_scripts("javascript", ".js"): - head += f'\n' + head += f'\n' head += f'\n' diff --git a/modules/ui_common.py b/modules/ui_common.py index 9405ac1f6..fd047f318 100644 --- a/modules/ui_common.py +++ b/modules/ui_common.py @@ -198,5 +198,9 @@ Requested path was: {f} html_info = gr.HTML(elem_id=f'html_info_{tabname}') html_log = gr.HTML(elem_id=f'html_log_{tabname}') - parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None) + for paste_tabname, paste_button in buttons.items(): + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery + )) + return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 66a418651..37d30e1f2 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -13,7 +13,7 @@ import shutil import errno from modules import extensions, shared, paths - +from modules.call_queue import wrap_gradio_gpu_call available_extensions = {"extensions": []} @@ -50,12 +50,17 @@ def apply_and_restart(disable_list, update_list): shared.state.need_restart = True -def check_updates(): +def check_updates(id_task, disable_list): check_access() - for ext in extensions.extensions: - if ext.remote is None: - continue + disabled = json.loads(disable_list) + assert type(disabled) == list, f"wrong disable_list data for apply_and_restart: {disable_list}" + + exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled] + shared.state.job_count = len(exts) + + for ext in exts: + shared.state.textinfo = ext.name try: ext.check_updates() @@ -63,7 +68,9 @@ def check_updates(): print(f"Error checking updates for {ext.name}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - return extension_table() + shared.state.nextjob() + + return extension_table(), "" def extension_table(): @@ -273,12 +280,13 @@ def create_ui(): with gr.Tabs(elem_id="tabs_extensions") as tabs: with gr.TabItem("Installed"): - with gr.Row(): + with gr.Row(elem_id="extensions_installed_top"): apply = gr.Button(value="Apply and restart UI", variant="primary") check = gr.Button(value="Check for updates") extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False) extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False) + info = gr.HTML() extensions_table = gr.HTML(lambda: extension_table()) apply.click( @@ -289,10 +297,10 @@ def create_ui(): ) check.click( - fn=check_updates, + fn=wrap_gradio_gpu_call(check_updates, extra_outputs=[gr.update()]), _js="extensions_check", - inputs=[], - outputs=[extensions_table], + inputs=[info, extensions_disabled_list], + outputs=[extensions_table, info], ) with gr.TabItem("Available"): diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index c6ff889a8..833679680 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -1,4 +1,7 @@ +import glob import os.path +import urllib.parse +from pathlib import Path from modules import shared import gradio as gr @@ -8,12 +11,31 @@ import html from modules.generation_parameters_copypaste import image_from_url_text extra_pages = [] +allowed_dirs = set() def register_page(page): """registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions""" extra_pages.append(page) + allowed_dirs.clear() + allowed_dirs.update(set(sum([x.allowed_directories_for_previews() for x in extra_pages], []))) + + +def add_pages_to_demo(app): + def fetch_file(filename: str = ""): + from starlette.responses import FileResponse + + if not any([Path(x).resolve() in Path(filename).resolve().parents for x in allowed_dirs]): + raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") + + if os.path.splitext(filename)[1].lower() != ".png": + raise ValueError(f"File cannot be fetched: {filename}. Only png.") + + # would profit from returning 304 + return FileResponse(filename, headers={"Accept-Ranges": "bytes"}) + + app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"]) class ExtraNetworksPage: @@ -26,10 +48,44 @@ class ExtraNetworksPage: def refresh(self): pass + def link_preview(self, filename): + return "./sd_extra_networks/thumb?filename=" + urllib.parse.quote(filename.replace('\\', '/')) + "&mtime=" + str(os.path.getmtime(filename)) + + def search_terms_from_path(self, filename, possible_directories=None): + abspath = os.path.abspath(filename) + + for parentdir in (possible_directories if possible_directories is not None else self.allowed_directories_for_previews()): + parentdir = os.path.abspath(parentdir) + if abspath.startswith(parentdir): + return abspath[len(parentdir):].replace('\\', '/') + + return "" + def create_html(self, tabname): view = shared.opts.extra_networks_default_view items_html = '' + subdirs = {} + for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: + for x in glob.glob(os.path.join(parentdir, '**/*'), recursive=True): + if not os.path.isdir(x): + continue + + subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/") + while subdir.startswith("/"): + subdir = subdir[1:] + + subdirs[subdir] = 1 + + if subdirs: + subdirs = {"": 1, **subdirs} + + subdirs_html = "".join([f""" + +""" for subdir in subdirs]) + for item in self.list_items(): items_html += self.create_html_for_item(item, tabname) @@ -38,6 +94,9 @@ class ExtraNetworksPage: items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs) res = f""" +
+{subdirs_html} +
{items_html}
@@ -54,14 +113,19 @@ class ExtraNetworksPage: def create_html_for_item(self, item, tabname): preview = item.get("preview", None) + onclick = item.get("onclick", None) + if onclick is None: + onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"' + args = { "preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '', - "prompt": item["prompt"], + "prompt": item.get("prompt", None), "tabname": json.dumps(tabname), "local_preview": json.dumps(item["local_preview"]), "name": item["name"], - "card_clicked": '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"', + "card_clicked": onclick, "save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"', + "search_term": item.get("search_term", ""), } return self.card_page.format(**args) @@ -143,7 +207,7 @@ def path_is_parent(parent_path, child_path): parent_path = os.path.abspath(parent_path) child_path = os.path.abspath(child_path) - return os.path.commonpath([parent_path]) == os.path.commonpath([parent_path, child_path]) + return child_path.startswith(parent_path) def setup_ui(ui, gallery): @@ -173,7 +237,8 @@ def setup_ui(ui, gallery): ui.button_save_preview.click( fn=save_preview, - _js="function(x, y, z){console.log(x, y, z); return [selected_gallery_index(), y, z]}", + _js="function(x, y, z){return [selected_gallery_index(), y, z]}", inputs=[ui.preview_target_filename, gallery, ui.preview_target_filename], outputs=[*ui.pages] ) + diff --git a/modules/ui_extra_networks_checkpoints.py b/modules/ui_extra_networks_checkpoints.py new file mode 100644 index 000000000..04097a794 --- /dev/null +++ b/modules/ui_extra_networks_checkpoints.py @@ -0,0 +1,39 @@ +import html +import json +import os +import urllib.parse + +from modules import shared, ui_extra_networks, sd_models + + +class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage): + def __init__(self): + super().__init__('Checkpoints') + + def refresh(self): + shared.refresh_checkpoints() + + def list_items(self): + checkpoint: sd_models.CheckpointInfo + for name, checkpoint in sd_models.checkpoints_list.items(): + path, ext = os.path.splitext(checkpoint.filename) + previews = [path + ".png", path + ".preview.png"] + + preview = None + for file in previews: + if os.path.isfile(file): + preview = self.link_preview(file) + break + + yield { + "name": checkpoint.name_for_extra, + "filename": path, + "preview": preview, + "search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""), + "onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"', + "local_preview": path + ".png", + } + + def allowed_directories_for_previews(self): + return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None] + diff --git a/modules/ui_extra_networks_hypernets.py b/modules/ui_extra_networks_hypernets.py index 65d000cf5..578510887 100644 --- a/modules/ui_extra_networks_hypernets.py +++ b/modules/ui_extra_networks_hypernets.py @@ -19,13 +19,14 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage): preview = None for file in previews: if os.path.isfile(file): - preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file)) + preview = self.link_preview(file) break yield { "name": name, "filename": path, "preview": preview, + "search_term": self.search_terms_from_path(path), "prompt": json.dumps(f""), "local_preview": path + ".png", } diff --git a/modules/ui_extra_networks_textual_inversion.py b/modules/ui_extra_networks_textual_inversion.py index dbd23d2df..bb64eb81e 100644 --- a/modules/ui_extra_networks_textual_inversion.py +++ b/modules/ui_extra_networks_textual_inversion.py @@ -19,12 +19,13 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage): preview = None if os.path.isfile(preview_file): - preview = "./file=" + preview_file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(preview_file)) + preview = self.link_preview(preview_file) yield { "name": embedding.name, "filename": embedding.filename, "preview": preview, + "search_term": self.search_terms_from_path(embedding.filename), "prompt": json.dumps(embedding.name), "local_preview": path + ".preview.png", } diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index f01160559..3df404834 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -383,6 +383,15 @@ class Script(scripts.Script): y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button]) z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button]) + self.infotext_fields = ( + (x_type, "X Type"), + (x_values, "X Values"), + (y_type, "Y Type"), + (y_values, "Y Values"), + (z_type, "Z Type"), + (z_values, "Z Values"), + ) + return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds] def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds): @@ -542,6 +551,7 @@ class Script(scripts.Script): if grid_infotext[0] is None: pc.extra_generation_params = copy(pc.extra_generation_params) + pc.extra_generation_params['Script'] = self.title() if x_opt.label != 'Nothing': pc.extra_generation_params["X Type"] = x_opt.label diff --git a/style.css b/style.css index dd9141040..05572f662 100644 --- a/style.css +++ b/style.css @@ -74,7 +74,12 @@ #txt2img_gallery img, #img2img_gallery img{ object-fit: scale-down; } - +#txt2img_actions_column, #img2img_actions_column { + margin: 0.35rem 0.75rem 0.35rem 0; +} +#script_list { + padding: .625rem .75rem 0 .625rem; +} .justify-center.overflow-x-scroll { justify-content: left; } @@ -126,6 +131,7 @@ #txt2img_actions_column, #img2img_actions_column{ gap: 0; + margin-right: .75rem; } #txt2img_tools, #img2img_tools{ @@ -150,6 +156,7 @@ #txt2img_styles_row, #img2img_styles_row{ gap: 0.25em; + margin-top: 0.3em; } #txt2img_styles_row > button, #img2img_styles_row > button{ @@ -311,11 +318,11 @@ input[type="range"]{ .min-h-\[6rem\] { min-height: unset !important; } .progressDiv{ - position: absolute; + position: relative; height: 20px; - top: -20px; background: #b4c0cc; border-radius: 3px !important; + margin-bottom: -3px; } .dark .progressDiv{ @@ -535,7 +542,7 @@ input[type="range"]{ } #quicksettings { - gap: 0.4em; + width: fit-content; } #quicksettings > div, #quicksettings > fieldset{ @@ -545,6 +552,7 @@ input[type="range"]{ border: none; box-shadow: none; background: none; + margin-right: 10px; } #quicksettings > div > div > div > label > span { @@ -567,7 +575,7 @@ canvas[key="mask"] { right: 0.5em; top: -0.6em; z-index: 400; - width: 8em; + width: 6em; } #quicksettings .gr-box > div > div > input.gr-text-input { top: -1.12em; @@ -665,11 +673,27 @@ canvas[key="mask"] { #quicksettings .gr-button-tool{ margin: 0; + border-color: unset; + background-color: unset; } - +#modelmerger_interp_description>p { + margin: 0!important; + text-align: center; +} +#modelmerger_interp_description { + margin: 0.35rem 0.75rem 1.23rem; +} #img2img_settings > div.gr-form, #txt2img_settings > div.gr-form { padding-top: 0.9em; + padding-bottom: 0.9em; +} +#txt2img_settings { + padding-top: 1.16em; + padding-bottom: 0.9em; +} +#img2img_settings { + padding-bottom: 0.9em; } #img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form, #train_tabs div.gr-form .gr-form{ @@ -741,6 +765,7 @@ footer { .dark .gr-compact{ background-color: rgb(31 41 55 / var(--tw-bg-opacity)); + margin-left: 0; } .gr-compact{ @@ -782,7 +807,13 @@ footer { margin: 0.3em; } +.extra-network-subdirs{ + padding: 0.2em 0.35em; +} +.extra-network-subdirs button{ + margin: 0 0.15em; +} #txt2img_extra_networks .search, #img2img_extra_networks .search{ display: inline-block; @@ -925,3 +956,6 @@ footer { color: red; } +[id*='_prompt_container'] > div { + margin: 0!important; +} diff --git a/webui-macos-env.sh b/webui-macos-env.sh index fa187dd10..37cac4fb0 100644 --- a/webui-macos-env.sh +++ b/webui-macos-env.sh @@ -10,7 +10,7 @@ then fi export install_dir="$HOME" -export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --use-cpu interrogate" +export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate" export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1" export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git" export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71" diff --git a/webui.py b/webui.py index 41f32f5ca..0d0b83649 100644 --- a/webui.py +++ b/webui.py @@ -12,7 +12,7 @@ from packaging import version import logging logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) -from modules import import_hook, errors, extra_networks +from modules import import_hook, errors, extra_networks, ui_extra_networks_checkpoints from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call @@ -119,6 +119,7 @@ def initialize(): ui_extra_networks.intialize() ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion()) ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks()) + ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints()) extra_networks.initialize() extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet()) @@ -227,6 +228,8 @@ def webui(): if launch_api: create_api(app) + ui_extra_networks.add_pages_to_demo(app) + modules.script_callbacks.app_started_callback(shared.demo, app) wait_on_server(shared.demo) @@ -254,6 +257,7 @@ def webui(): ui_extra_networks.intialize() ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion()) ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks()) + ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints()) extra_networks.initialize() extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())