diff --git a/webui.py b/webui.py index 7f8c928cc..742615e1c 100644 --- a/webui.py +++ b/webui.py @@ -4,7 +4,7 @@ import torch.nn as nn import numpy as np import gradio as gr from omegaconf import OmegaConf -from PIL import Image, ImageFont, ImageDraw +from PIL import Image, ImageFont, ImageDraw, PngImagePlugin from itertools import islice from einops import rearrange, repeat from torch import autocast @@ -49,11 +49,13 @@ parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=( parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long") parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)") -parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") -parser.add_argument("--save-format", type=str, default='png', help="file format for saved indiviual samples; can be png or jpg") -parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg") +parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") +parser.add_argument("--save-format", type=str, default='png', help="file format for saved indiviual samples; can be png or jpg") +parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg") parser.add_argument("--grid-extended-filename", action='store_true', help="save grid images to filenames with extended info: seed, prompt") -parser.add_argument("--jpeg-quality", type=int, default=80, help="quality for saved jpeg images") +parser.add_argument("--jpeg-quality", type=int, default=80, help="quality for saved jpeg images") +parser.add_argument("--disable-pnginfo", action='store_true', help="disable saving text information about generation parameters as chunks to png files") + opt = parser.parse_args() GFPGAN_dir = opt.gfpgan_dir @@ -141,7 +143,7 @@ def sanitize_filename_part(text): return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128] -def save_image(image, path, basename, seed, prompt, extension, short_filename=False): +def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False): prompt = sanitize_filename_part(prompt) if short_filename: @@ -149,7 +151,13 @@ def save_image(image, path, basename, seed, prompt, extension, short_filename=Fa else: filename = f"{basename}-{seed}-{prompt[:128]}.{extension}" - image.save(os.path.join(path, filename), quality=opt.jpeg_quality) + if extension == 'png' and not opt.disable_pnginfo: + pnginfo = PngImagePlugin.PngInfo() + pnginfo.add_text("parameters", info) + else: + pnginfo = None + + image.save(os.path.join(path, filename), quality=opt.jpeg_quality, pnginfo=pnginfo) def load_GFPGAN(): @@ -373,6 +381,11 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, all_prompts = batch_size * n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] + info = f""" + {prompt} + Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''} + """.strip() + "".join(["\n\n" + x for x in comments]) + precision_scope = autocast if opt.precision == "autocast" else nullcontext output_images = [] with torch.no_grad(), precision_scope("cuda"), model.ema_scope(): @@ -407,7 +420,7 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, x_sample = restored_img image = Image.fromarray(x_sample) - save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opt.save_format) + save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opt.save_format, info=info) output_images.append(image) base_count += 1 @@ -426,16 +439,9 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, output_images.insert(0, grid) - save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opt.grid_format, short_filename=not opt.grid_extended_filename) + save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename) grid_count += 1 - info = f""" -{prompt} -Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''} - """.strip() - - for comment in comments: - info += "\n\n" + comment torch_gc() return output_images, seed, info @@ -619,7 +625,7 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat grid_count = len(os.listdir(outpath)) - 1 grid = image_grid(history, batch_size, force_n_rows=1) - save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opt.grid_format, short_filename=not opt.grid_extended_filename) + save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename) output_images = history seed = initial_seed