pass extra KDiffusionSampler function parameters
This commit is contained in:
parent
6b78833e33
commit
2ab3d593f9
|
@ -37,6 +37,11 @@ samplers = [
|
|||
]
|
||||
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
|
||||
|
||||
sampler_extra_params = {
|
||||
'sample_euler':['s_churn','s_tmin','s_noise'],
|
||||
'sample_heun' :['s_churn','s_tmin','s_noise'],
|
||||
'sample_dpm_2':['s_churn','s_tmin','s_noise'],
|
||||
}
|
||||
|
||||
def setup_img2img_steps(p, steps=None):
|
||||
if opts.img2img_fix_steps or steps is not None:
|
||||
|
@ -224,6 +229,7 @@ class KDiffusionSampler:
|
|||
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
self.funcname = funcname
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||
self.extra_params = sampler_extra_params.get(funcname,[])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
self.sampler_noise_index = 0
|
||||
|
@ -269,7 +275,12 @@ class KDiffusionSampler:
|
|||
if self.sampler_noises is not None:
|
||||
k_diffusion.sampling.torch = TorchHijack(self)
|
||||
|
||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
||||
extra_params_kwargs = {}
|
||||
for val in self.extra_params:
|
||||
if hasattr(opts,val):
|
||||
extra_params_kwargs[val] = getattr(opts,val)
|
||||
|
||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
||||
|
||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
||||
steps = steps or p.steps
|
||||
|
@ -286,7 +297,12 @@ class KDiffusionSampler:
|
|||
if self.sampler_noises is not None:
|
||||
k_diffusion.sampling.torch = TorchHijack(self)
|
||||
|
||||
samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
||||
extra_params_kwargs = {}
|
||||
for val in self.extra_params:
|
||||
if hasattr(opts,val):
|
||||
extra_params_kwargs[val] = getattr(opts,val)
|
||||
|
||||
samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
||||
|
||||
return samples
|
||||
|
||||
|
|
Loading…
Reference in New Issue