fix linter issues

This commit is contained in:
superhero-7 2023-10-01 12:25:19 +08:00
parent f8f4ff2bb8
commit 2d947175b9
3 changed files with 9 additions and 10 deletions

View File

@ -212,7 +212,7 @@ class StableDiffusionModelHijack:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
@ -258,7 +258,7 @@ class StableDiffusionModelHijack:
if hasattr(m, 'cond_stage_model'):
delattr(m, 'cond_stage_model')
elif type(m.cond_stage_model) == sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped

View File

@ -95,8 +95,7 @@ def guess_model_config_from_state_dict(sd, filename):
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
# import pdb; pdb.set_trace()
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
return config_alt_diffusion_m18

View File

@ -1,4 +1,4 @@
from transformers import BertPreTrainedModel,BertModel,BertConfig
from transformers import BertPreTrainedModel,BertConfig
import torch.nn as nn
import torch
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
@ -28,7 +28,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
config_class = BertSeriesConfig
def __init__(self, config=None, **kargs):
# modify initialization for autoloading
# modify initialization for autoloading
if config is None:
config = XLMRobertaConfig()
config.attention_probs_dropout_prob= 0.1
@ -80,7 +80,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
text["attention_mask"] = torch.tensor(
text['attention_mask']).to(device)
features = self(**text)
return features['projection_state']
return features['projection_state']
def forward(
self,
@ -147,8 +147,8 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
"hidden_states": outputs.hidden_states,
"attentions": outputs.attentions,
}
# return {
# 'pooler_output':pooler_output,
# 'last_hidden_state':outputs.last_hidden_state,
@ -161,4 +161,4 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
base_model_prefix = 'roberta'
config_class= RobertaSeriesConfig
config_class= RobertaSeriesConfig