Textual Inversion: Added custom training image size and number of repeats per input image in a single epoch
This commit is contained in:
parent
8acc901ba3
commit
3110f895b2
|
@ -15,13 +15,13 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
|
|||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None):
|
||||
def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None):
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.size = size
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.width = size
|
||||
self.height = size
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
self.dataset = []
|
||||
|
|
|
@ -7,8 +7,8 @@ import tqdm
|
|||
from modules import shared, images
|
||||
|
||||
|
||||
def preprocess(process_src, process_dst, process_flip, process_split, process_caption):
|
||||
size = 512
|
||||
def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption):
|
||||
size = process_size
|
||||
src = os.path.abspath(process_src)
|
||||
dst = os.path.abspath(process_dst)
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@ import torch
|
|||
import tqdm
|
||||
import html
|
||||
import datetime
|
||||
import math
|
||||
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
|
@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
|||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file):
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
|
@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps,
|
|||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
|
@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps,
|
|||
if ititial_step > steps:
|
||||
return embedding, filename
|
||||
|
||||
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
|
||||
epoch_len = (tr_img_len * num_repeats) + tr_img_len
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, (x, text) in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps,
|
|||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
pbar.set_description(f"loss: {losses.mean():.7f}")
|
||||
epoch_num = math.floor(embedding.step / epoch_len)
|
||||
epoch_step = embedding.step - (epoch_num * epoch_len)
|
||||
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
|
||||
|
||||
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
||||
|
@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps,
|
|||
sd_model=shared.sd_model,
|
||||
prompt=text,
|
||||
steps=20,
|
||||
height=training_size,
|
||||
width=training_size,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
|
|
|
@ -1029,6 +1029,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
|
||||
process_src = gr.Textbox(label='Source directory')
|
||||
process_dst = gr.Textbox(label='Destination directory')
|
||||
process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512)
|
||||
|
||||
with gr.Row():
|
||||
process_flip = gr.Checkbox(label='Create flipped copies')
|
||||
|
@ -1043,13 +1044,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 512x512 images</p>")
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||
learn_rate = gr.Number(label='Learning rate', value=5.0e-03)
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512)
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
||||
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
|
||||
|
@ -1092,6 +1095,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
inputs=[
|
||||
process_src,
|
||||
process_dst,
|
||||
process_size,
|
||||
process_flip,
|
||||
process_split,
|
||||
process_caption,
|
||||
|
@ -1110,7 +1114,9 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
learn_rate,
|
||||
dataset_directory,
|
||||
log_directory,
|
||||
training_size,
|
||||
steps,
|
||||
num_repeats,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
|
|
Loading…
Reference in New Issue