use typing.list in prompt_parser.py for wider python version support
This commit is contained in:
parent
f8e41a96bb
commit
34c358d10d
|
@ -1,6 +1,6 @@
|
|||
import re
|
||||
from collections import namedtuple
|
||||
|
||||
from typing import List
|
||||
import lark
|
||||
|
||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||
|
@ -175,14 +175,14 @@ def get_multicond_prompt_list(prompts):
|
|||
|
||||
class ComposableScheduledPromptConditioning:
|
||||
def __init__(self, schedules, weight=1.0):
|
||||
self.schedules: list[ScheduledPromptConditioning] = schedules
|
||||
self.schedules: List[ScheduledPromptConditioning] = schedules
|
||||
self.weight: float = weight
|
||||
|
||||
|
||||
class MulticondLearnedConditioning:
|
||||
def __init__(self, shape, batch):
|
||||
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
||||
self.batch: list[list[ComposableScheduledPromptConditioning]] = batch
|
||||
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
||||
|
||||
|
||||
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
||||
|
@ -203,7 +203,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
|
|||
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||
|
||||
|
||||
def reconstruct_cond_batch(c: list[list[ScheduledPromptConditioning]], current_step):
|
||||
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
||||
param = c[0][0].cond
|
||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||
for i, cond_schedule in enumerate(c):
|
||||
|
|
Loading…
Reference in New Issue