Merge pull request #12371 from AUTOMATIC1111/refiner
initial refiner support
This commit is contained in:
commit
36762f0eaf
|
@ -377,6 +377,9 @@ class StableDiffusionProcessing:
|
|||
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
|
||||
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
|
||||
|
||||
def get_conds(self):
|
||||
return self.c, self.uc
|
||||
|
||||
def parse_extra_network_prompts(self):
|
||||
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
|
||||
|
||||
|
@ -611,6 +614,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
||||
|
||||
try:
|
||||
# after running refiner, the refiner model is not unloaded - webui swaps back to main model here
|
||||
if shared.sd_model.sd_checkpoint_info.title != opts.sd_model_checkpoint:
|
||||
sd_models.reload_model_weights()
|
||||
|
||||
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
|
||||
if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
|
||||
p.override_settings.pop('sd_model_checkpoint', None)
|
||||
|
@ -710,6 +717,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||
if state.interrupted:
|
||||
break
|
||||
|
||||
sd_models.reload_model_weights() # model can be changed for example by refiner
|
||||
|
||||
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
|
@ -1201,6 +1210,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
with devices.autocast():
|
||||
extra_networks.activate(self, self.extra_network_data)
|
||||
|
||||
def get_conds(self):
|
||||
if self.is_hr_pass:
|
||||
return self.hr_c, self.hr_uc
|
||||
|
||||
return super().get_conds()
|
||||
|
||||
|
||||
def parse_extra_network_prompts(self):
|
||||
res = super().parse_extra_network_prompts()
|
||||
|
||||
|
|
|
@ -295,11 +295,27 @@ def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
|
|||
return res
|
||||
|
||||
|
||||
class SkipWritingToConfig:
|
||||
"""This context manager prevents load_model_weights from writing checkpoint name to the config when it loads weight."""
|
||||
|
||||
skip = False
|
||||
previous = None
|
||||
|
||||
def __enter__(self):
|
||||
self.previous = SkipWritingToConfig.skip
|
||||
SkipWritingToConfig.skip = True
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
SkipWritingToConfig.skip = self.previous
|
||||
|
||||
|
||||
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
|
||||
sd_model_hash = checkpoint_info.calculate_shorthash()
|
||||
timer.record("calculate hash")
|
||||
|
||||
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
|
||||
if not SkipWritingToConfig.skip:
|
||||
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
|
||||
|
@ -624,8 +640,11 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
|
|||
timer.record("send model to device")
|
||||
|
||||
model_data.set_sd_model(already_loaded)
|
||||
shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title
|
||||
shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256
|
||||
|
||||
if not SkipWritingToConfig.skip:
|
||||
shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title
|
||||
shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256
|
||||
|
||||
print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}")
|
||||
return model_data.sd_model
|
||||
elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit:
|
||||
|
|
|
@ -38,16 +38,24 @@ class CFGDenoiser(torch.nn.Module):
|
|||
negative prompt.
|
||||
"""
|
||||
|
||||
def __init__(self, model, sampler):
|
||||
def __init__(self, sampler):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.model_wrap = None
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
self.steps = None
|
||||
self.step = 0
|
||||
self.image_cfg_scale = None
|
||||
self.padded_cond_uncond = False
|
||||
self.sampler = sampler
|
||||
self.model_wrap = None
|
||||
self.p = None
|
||||
|
||||
@property
|
||||
def inner_model(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
|
||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||
|
@ -68,10 +76,21 @@ class CFGDenoiser(torch.nn.Module):
|
|||
def get_pred_x0(self, x_in, x_out, sigma):
|
||||
return x_out
|
||||
|
||||
def update_inner_model(self):
|
||||
self.model_wrap = None
|
||||
|
||||
c, uc = self.p.get_conds()
|
||||
self.sampler.sampler_extra_args['cond'] = c
|
||||
self.sampler.sampler_extra_args['uncond'] = uc
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
|
||||
if sd_samplers_common.apply_refiner(self):
|
||||
cond = self.sampler.sampler_extra_args['cond']
|
||||
uncond = self.sampler.sampler_extra_args['uncond']
|
||||
|
||||
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
|
||||
# so is_edit_model is set to False to support AND composition.
|
||||
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
|
||||
|
|
|
@ -3,7 +3,7 @@ from collections import namedtuple
|
|||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
|
||||
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
|
||||
from modules.shared import opts, state
|
||||
import k_diffusion.sampling
|
||||
|
||||
|
@ -131,6 +131,35 @@ def replace_torchsde_browinan():
|
|||
replace_torchsde_browinan()
|
||||
|
||||
|
||||
def apply_refiner(sampler):
|
||||
completed_ratio = sampler.step / sampler.steps
|
||||
|
||||
if completed_ratio <= shared.opts.sd_refiner_switch_at:
|
||||
return False
|
||||
|
||||
if shared.opts.sd_refiner_checkpoint == "None":
|
||||
return False
|
||||
|
||||
if shared.sd_model.sd_checkpoint_info.title == shared.opts.sd_refiner_checkpoint:
|
||||
return False
|
||||
|
||||
refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(shared.opts.sd_refiner_checkpoint)
|
||||
if refiner_checkpoint_info is None:
|
||||
raise Exception(f'Could not find checkpoint with name {shared.opts.sd_refiner_checkpoint}')
|
||||
|
||||
sampler.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title
|
||||
sampler.p.extra_generation_params['Refiner switch at'] = shared.opts.sd_refiner_switch_at
|
||||
|
||||
with sd_models.SkipWritingToConfig():
|
||||
sd_models.reload_model_weights(info=refiner_checkpoint_info)
|
||||
|
||||
devices.torch_gc()
|
||||
sampler.p.setup_conds()
|
||||
sampler.update_inner_model()
|
||||
|
||||
return True
|
||||
|
||||
|
||||
class TorchHijack:
|
||||
"""This is here to replace torch.randn_like of k-diffusion.
|
||||
|
||||
|
@ -176,8 +205,9 @@ class Sampler:
|
|||
|
||||
self.conditioning_key = shared.sd_model.model.conditioning_key
|
||||
|
||||
self.model_wrap = None
|
||||
self.p = None
|
||||
self.model_wrap_cfg = None
|
||||
self.sampler_extra_args = None
|
||||
|
||||
def callback_state(self, d):
|
||||
step = d['i']
|
||||
|
@ -189,6 +219,7 @@ class Sampler:
|
|||
shared.total_tqdm.update()
|
||||
|
||||
def launch_sampling(self, steps, func):
|
||||
self.model_wrap_cfg.steps = steps
|
||||
state.sampling_steps = steps
|
||||
state.sampling_step = 0
|
||||
|
||||
|
@ -208,6 +239,8 @@ class Sampler:
|
|||
return p.steps
|
||||
|
||||
def initialize(self, p) -> dict:
|
||||
self.p = p
|
||||
self.model_wrap_cfg.p = p
|
||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
self.model_wrap_cfg.step = 0
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import torch
|
||||
import inspect
|
||||
import k_diffusion.sampling
|
||||
from modules import sd_samplers_common, sd_samplers_extra
|
||||
from modules.sd_samplers_cfg_denoiser import CFGDenoiser
|
||||
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
|
||||
|
||||
from modules.shared import opts
|
||||
import modules.shared as shared
|
||||
|
@ -53,17 +52,24 @@ k_diffusion_scheduler = {
|
|||
}
|
||||
|
||||
|
||||
class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
|
||||
@property
|
||||
def inner_model(self):
|
||||
if self.model_wrap is None:
|
||||
denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
||||
self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
|
||||
|
||||
return self.model_wrap
|
||||
|
||||
|
||||
class KDiffusionSampler(sd_samplers_common.Sampler):
|
||||
def __init__(self, funcname, sd_model):
|
||||
|
||||
super().__init__(funcname)
|
||||
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
|
||||
|
||||
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
||||
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap, self)
|
||||
self.model_wrap_cfg = CFGDenoiserKDiffusion(self)
|
||||
self.model_wrap = self.model_wrap_cfg.inner_model
|
||||
|
||||
def get_sigmas(self, p, steps):
|
||||
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
||||
|
@ -144,7 +150,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
|||
|
||||
self.model_wrap_cfg.init_latent = x
|
||||
self.last_latent = x
|
||||
extra_args = {
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
|
@ -152,7 +158,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
|||
's_min_uncond': self.s_min_uncond
|
||||
}
|
||||
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
if self.model_wrap_cfg.padded_cond_uncond:
|
||||
p.extra_generation_params["Pad conds"] = True
|
||||
|
@ -184,13 +190,14 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
|||
extra_params_kwargs['noise_sampler'] = noise_sampler
|
||||
|
||||
self.last_latent = x
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': p.cfg_scale,
|
||||
's_min_uncond': self.s_min_uncond
|
||||
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
}
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
if self.model_wrap_cfg.padded_cond_uncond:
|
||||
p.extra_generation_params["Pad conds"] = True
|
||||
|
|
|
@ -45,10 +45,10 @@ class CompVisTimestepsVDenoiser(torch.nn.Module):
|
|||
|
||||
class CFGDenoiserTimesteps(CFGDenoiser):
|
||||
|
||||
def __init__(self, model, sampler):
|
||||
super().__init__(model, sampler)
|
||||
def __init__(self, sampler):
|
||||
super().__init__(sampler)
|
||||
|
||||
self.alphas = model.inner_model.alphas_cumprod
|
||||
self.alphas = shared.sd_model.alphas_cumprod
|
||||
|
||||
def get_pred_x0(self, x_in, x_out, sigma):
|
||||
ts = int(sigma.item())
|
||||
|
@ -61,6 +61,14 @@ class CFGDenoiserTimesteps(CFGDenoiser):
|
|||
|
||||
return pred_x0
|
||||
|
||||
@property
|
||||
def inner_model(self):
|
||||
if self.model_wrap is None:
|
||||
denoiser = CompVisTimestepsVDenoiser if shared.sd_model.parameterization == "v" else CompVisTimestepsDenoiser
|
||||
self.model_wrap = denoiser(shared.sd_model)
|
||||
|
||||
return self.model_wrap
|
||||
|
||||
|
||||
class CompVisSampler(sd_samplers_common.Sampler):
|
||||
def __init__(self, funcname, sd_model):
|
||||
|
@ -69,9 +77,7 @@ class CompVisSampler(sd_samplers_common.Sampler):
|
|||
self.eta_option_field = 'eta_ddim'
|
||||
self.eta_infotext_field = 'Eta DDIM'
|
||||
|
||||
denoiser = CompVisTimestepsVDenoiser if sd_model.parameterization == "v" else CompVisTimestepsDenoiser
|
||||
self.model_wrap = denoiser(sd_model)
|
||||
self.model_wrap_cfg = CFGDenoiserTimesteps(self.model_wrap, self)
|
||||
self.model_wrap_cfg = CFGDenoiserTimesteps(self)
|
||||
|
||||
def get_timesteps(self, p, steps):
|
||||
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
||||
|
@ -107,7 +113,7 @@ class CompVisSampler(sd_samplers_common.Sampler):
|
|||
|
||||
self.model_wrap_cfg.init_latent = x
|
||||
self.last_latent = x
|
||||
extra_args = {
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
|
@ -115,7 +121,7 @@ class CompVisSampler(sd_samplers_common.Sampler):
|
|||
's_min_uncond': self.s_min_uncond
|
||||
}
|
||||
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
if self.model_wrap_cfg.padded_cond_uncond:
|
||||
p.extra_generation_params["Pad conds"] = True
|
||||
|
@ -133,13 +139,14 @@ class CompVisSampler(sd_samplers_common.Sampler):
|
|||
extra_params_kwargs['timesteps'] = timesteps
|
||||
|
||||
self.last_latent = x
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': p.cfg_scale,
|
||||
's_min_uncond': self.s_min_uncond
|
||||
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
}
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
if self.model_wrap_cfg.padded_cond_uncond:
|
||||
p.extra_generation_params["Pad conds"] = True
|
||||
|
|
|
@ -140,6 +140,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|||
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
|
||||
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
|
||||
"tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
|
||||
"sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext="Refiner").info("switch to another model in the middle of generation"),
|
||||
"sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Refiner switch at').info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
|
||||
|
|
Loading…
Reference in New Issue