improve debug markers, fix algo weighting
This commit is contained in:
parent
1be5933ba2
commit
3e6c2420c1
|
@ -1,4 +1,5 @@
|
|||
import cv2
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from math import log, sqrt
|
||||
import numpy as np
|
||||
|
@ -26,19 +27,9 @@ def crop_image(im, settings):
|
|||
scale_by = settings.crop_height / im.height
|
||||
|
||||
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
||||
im_debug = im.copy()
|
||||
|
||||
if im.width == settings.crop_width and im.height == settings.crop_height:
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
rect = [0, 0, im.width, im.height]
|
||||
rect[2] -= 1
|
||||
rect[3] -= 1
|
||||
d.rectangle(rect, outline=GREEN)
|
||||
if settings.destop_view_image:
|
||||
im.show()
|
||||
return im
|
||||
|
||||
focus = focal_point(im, settings)
|
||||
focus = focal_point(im_debug, settings)
|
||||
|
||||
# take the focal point and turn it into crop coordinates that try to center over the focal
|
||||
# point but then get adjusted back into the frame
|
||||
|
@ -62,89 +53,143 @@ def crop_image(im, settings):
|
|||
|
||||
crop = [x1, y1, x2, y2]
|
||||
|
||||
results = []
|
||||
|
||||
results.append(im.crop(tuple(crop)))
|
||||
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
d = ImageDraw.Draw(im_debug)
|
||||
rect = list(crop)
|
||||
rect[2] -= 1
|
||||
rect[3] -= 1
|
||||
d.rectangle(rect, outline=GREEN)
|
||||
results.append(im_debug)
|
||||
if settings.destop_view_image:
|
||||
im.show()
|
||||
im_debug.show()
|
||||
|
||||
return im.crop(tuple(crop))
|
||||
return results
|
||||
|
||||
def focal_point(im, settings):
|
||||
corner_points = image_corner_points(im, settings)
|
||||
entropy_points = image_entropy_points(im, settings)
|
||||
face_points = image_face_points(im, settings)
|
||||
|
||||
total_points = len(corner_points) + len(entropy_points) + len(face_points)
|
||||
|
||||
corner_weight = settings.corner_points_weight
|
||||
entropy_weight = settings.entropy_points_weight
|
||||
face_weight = settings.face_points_weight
|
||||
|
||||
weight_pref_total = corner_weight + entropy_weight + face_weight
|
||||
|
||||
# weight things
|
||||
pois = []
|
||||
if weight_pref_total == 0 or total_points == 0:
|
||||
return pois
|
||||
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ]
|
||||
)
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ]
|
||||
)
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
||||
)
|
||||
weight_pref_total = 0
|
||||
if len(corner_points) > 0:
|
||||
weight_pref_total += settings.corner_points_weight
|
||||
if len(entropy_points) > 0:
|
||||
weight_pref_total += settings.entropy_points_weight
|
||||
if len(face_points) > 0:
|
||||
weight_pref_total += settings.face_points_weight
|
||||
|
||||
corner_centroid = None
|
||||
if len(corner_points) > 0:
|
||||
corner_centroid = centroid(corner_points)
|
||||
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
||||
pois.append(corner_centroid)
|
||||
|
||||
entropy_centroid = None
|
||||
if len(entropy_points) > 0:
|
||||
entropy_centroid = centroid(entropy_points)
|
||||
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
||||
pois.append(entropy_centroid)
|
||||
|
||||
face_centroid = None
|
||||
if len(face_points) > 0:
|
||||
face_centroid = centroid(face_points)
|
||||
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
||||
pois.append(face_centroid)
|
||||
|
||||
average_point = poi_average(pois, settings)
|
||||
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
for f in face_points:
|
||||
d.rectangle(f.bounding(f.size), outline=RED)
|
||||
for f in entropy_points:
|
||||
d.rectangle(f.bounding(30), outline=BLUE)
|
||||
for poi in pois:
|
||||
w = max(4, 4 * 0.5 * sqrt(poi.weight))
|
||||
d.ellipse(poi.bounding(w), fill=BLUE)
|
||||
d.ellipse(average_point.bounding(25), outline=GREEN)
|
||||
max_size = min(im.width, im.height) * 0.07
|
||||
if corner_centroid is not None:
|
||||
color = BLUE
|
||||
box = corner_centroid.bounding(max_size * corner_centroid.weight)
|
||||
d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color)
|
||||
d.ellipse(box, outline=color)
|
||||
if len(corner_points) > 1:
|
||||
for f in corner_points:
|
||||
d.rectangle(f.bounding(4), outline=color)
|
||||
if entropy_centroid is not None:
|
||||
color = "#ff0"
|
||||
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
|
||||
d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color)
|
||||
d.ellipse(box, outline=color)
|
||||
if len(entropy_points) > 1:
|
||||
for f in entropy_points:
|
||||
d.rectangle(f.bounding(4), outline=color)
|
||||
if face_centroid is not None:
|
||||
color = RED
|
||||
box = face_centroid.bounding(max_size * face_centroid.weight)
|
||||
d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color)
|
||||
d.ellipse(box, outline=color)
|
||||
if len(face_points) > 1:
|
||||
for f in face_points:
|
||||
d.rectangle(f.bounding(4), outline=color)
|
||||
|
||||
d.ellipse(average_point.bounding(max_size), outline=GREEN)
|
||||
|
||||
return average_point
|
||||
|
||||
|
||||
def image_face_points(im, settings):
|
||||
np_im = np.array(im)
|
||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||
if settings.dnn_model_path is not None:
|
||||
detector = cv2.FaceDetectorYN.create(
|
||||
settings.dnn_model_path,
|
||||
"",
|
||||
(im.width, im.height),
|
||||
0.8, # score threshold
|
||||
0.3, # nms threshold
|
||||
5000 # keep top k before nms
|
||||
)
|
||||
faces = detector.detect(np.array(im))
|
||||
results = []
|
||||
if faces[1] is not None:
|
||||
for face in faces[1]:
|
||||
x = face[0]
|
||||
y = face[1]
|
||||
w = face[2]
|
||||
h = face[3]
|
||||
results.append(
|
||||
PointOfInterest(
|
||||
int(x + (w * 0.5)), # face focus left/right is center
|
||||
int(y + (h * 0)), # face focus up/down is close to the top of the head
|
||||
size = w,
|
||||
weight = 1/len(faces[1])
|
||||
)
|
||||
)
|
||||
return results
|
||||
else:
|
||||
np_im = np.array(im)
|
||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
tries = [
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
||||
]
|
||||
tries = [
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
||||
]
|
||||
for t in tries:
|
||||
classifier = cv2.CascadeClassifier(t[0])
|
||||
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||
try:
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
except:
|
||||
continue
|
||||
|
||||
for t in tries:
|
||||
# print(t[0])
|
||||
classifier = cv2.CascadeClassifier(t[0])
|
||||
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||
try:
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
except:
|
||||
continue
|
||||
|
||||
if len(faces) > 0:
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects]
|
||||
if len(faces) > 0:
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
|
||||
return []
|
||||
|
||||
|
||||
|
@ -161,7 +206,7 @@ def image_corner_points(im, settings):
|
|||
np_im,
|
||||
maxCorners=100,
|
||||
qualityLevel=0.04,
|
||||
minDistance=min(grayscale.width, grayscale.height)*0.07,
|
||||
minDistance=min(grayscale.width, grayscale.height)*0.03,
|
||||
useHarrisDetector=False,
|
||||
)
|
||||
|
||||
|
@ -171,7 +216,7 @@ def image_corner_points(im, settings):
|
|||
focal_points = []
|
||||
for point in points:
|
||||
x, y = point.ravel()
|
||||
focal_points.append(PointOfInterest(x, y, size=4))
|
||||
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
|
||||
|
||||
return focal_points
|
||||
|
||||
|
@ -205,17 +250,22 @@ def image_entropy_points(im, settings):
|
|||
x_mid = int(crop_best[0] + settings.crop_width/2)
|
||||
y_mid = int(crop_best[1] + settings.crop_height/2)
|
||||
|
||||
return [PointOfInterest(x_mid, y_mid, size=25)]
|
||||
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
||||
|
||||
|
||||
def image_entropy(im):
|
||||
# greyscale image entropy
|
||||
# band = np.asarray(im.convert("L"))
|
||||
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
||||
band = np.asarray(im.convert("L"))
|
||||
# band = np.asarray(im.convert("1"), dtype=np.uint8)
|
||||
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||
hist = hist[hist > 0]
|
||||
return -np.log2(hist / hist.sum()).sum()
|
||||
|
||||
def centroid(pois):
|
||||
x = [poi.x for poi in pois]
|
||||
y = [poi.y for poi in pois]
|
||||
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
|
||||
|
||||
|
||||
def poi_average(pois, settings):
|
||||
weight = 0.0
|
||||
|
@ -260,11 +310,12 @@ class PointOfInterest:
|
|||
|
||||
|
||||
class Settings:
|
||||
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False):
|
||||
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
|
||||
self.crop_width = crop_width
|
||||
self.crop_height = crop_height
|
||||
self.corner_points_weight = corner_points_weight
|
||||
self.entropy_points_weight = entropy_points_weight
|
||||
self.face_points_weight = entropy_points_weight
|
||||
self.face_points_weight = face_points_weight
|
||||
self.annotate_image = annotate_image
|
||||
self.destop_view_image = False
|
||||
self.destop_view_image = False
|
||||
self.dnn_model_path = dnn_model_path
|
Loading…
Reference in New Issue