diff --git a/README.md b/README.md index 859a91b6f..a98bb00b7 100644 --- a/README.md +++ b/README.md @@ -70,6 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args) - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args) +- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. diff --git a/modules/processing.py b/modules/processing.py index 539cde38d..217869685 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -540,11 +540,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f - - def create_dummy_mask(self, x, first_phase: bool = False): + def create_dummy_mask(self, x, width=None, height=None): if self.sampler.conditioning_key in {'hybrid', 'concat'}: - height = self.firstphase_height if first_phase else self.height - width = self.firstphase_width if first_phase else self.width + height = height or self.height + width = width or self.width # The "masked-image" in this case will just be all zeros since the entire image is masked. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) @@ -571,7 +570,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, first_phase=True)) + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, self.firstphase_width, self.firstphase_height)) samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] @@ -634,6 +633,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.inpainting_mask_invert = inpainting_mask_invert self.mask = None self.nmask = None + self.image_conditioning = None def init(self, all_prompts, all_seeds, all_subseeds): self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model) @@ -735,9 +735,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): elif self.inpainting_fill == 3: self.init_latent = self.init_latent * self.mask - conditioning_key = self.sampler.conditioning_key - - if conditioning_key in {'hybrid', 'concat'}: + if self.sampler.conditioning_key in {'hybrid', 'concat'}: if self.image_mask is not None: conditioning_mask = np.array(self.image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 439380713..fd92a3354 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -301,6 +301,7 @@ def get_unconditional_conditioning(self, batch_size, null_label=None): c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device) return c + class LatentInpaintDiffusion(LatentDiffusion): def __init__( self, @@ -314,9 +315,11 @@ class LatentInpaintDiffusion(LatentDiffusion): assert self.masked_image_key in concat_keys self.concat_keys = concat_keys + def should_hijack_inpainting(checkpoint_info): return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml") + def do_inpainting_hijack(): ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion