diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index a638f9121..dd30a1b5f 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -357,6 +357,7 @@ infotext_to_setting_name_mapping = [ ('Token merging ratio hr', 'token_merging_ratio_hr'), ('RNG', 'randn_source'), ('NGMS', 's_min_uncond'), + ('Pad conds', 'pad_cond_uncond'), ] diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index f8a0c7ba8..71581b763 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -69,6 +69,7 @@ class CFGDenoiser(torch.nn.Module): self.init_latent = None self.step = 0 self.image_cfg_scale = None + self.padded_cond_uncond = False def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] @@ -133,15 +134,17 @@ class CFGDenoiser(torch.nn.Module): x_in = x_in[:-batch_size] sigma_in = sigma_in[:-batch_size] - # TODO add infotext entry + self.padded_cond_uncond = False if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: empty = shared.sd_model.cond_stage_model_empty_prompt num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] if num_repeats < 0: tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1) + self.padded_cond_uncond = True elif num_repeats > 0: uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1) + self.padded_cond_uncond = True if tensor.shape[1] == uncond.shape[1] or skip_uncond: if is_edit_model: @@ -405,6 +408,9 @@ class KDiffusionSampler: samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) + if self.model_wrap_cfg.padded_cond_uncond: + p.extra_generation_params["Pad conds"] = True + return samples def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): @@ -438,5 +444,8 @@ class KDiffusionSampler: 's_min_uncond': self.s_min_uncond }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + if self.model_wrap_cfg.padded_cond_uncond: + p.extra_generation_params["Pad conds"] = True + return samples