fixes related to merge
This commit is contained in:
parent
5de806184f
commit
530103b586
|
@ -1,103 +0,0 @@
|
|||
import glob
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
|
||||
from ldm.util import default
|
||||
from modules import devices, shared
|
||||
import torch
|
||||
from torch import einsum
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
def __init__(self, dim, state_dict):
|
||||
super().__init__()
|
||||
|
||||
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
||||
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
||||
|
||||
self.load_state_dict(state_dict, strict=True)
|
||||
self.to(devices.device)
|
||||
|
||||
def forward(self, x):
|
||||
return x + (self.linear2(self.linear1(x)))
|
||||
|
||||
|
||||
class Hypernetwork:
|
||||
filename = None
|
||||
name = None
|
||||
|
||||
def __init__(self, filename):
|
||||
self.filename = filename
|
||||
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||
self.layers = {}
|
||||
|
||||
state_dict = torch.load(filename, map_location='cpu')
|
||||
for size, sd in state_dict.items():
|
||||
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||
|
||||
|
||||
def list_hypernetworks(path):
|
||||
res = {}
|
||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
res[name] = filename
|
||||
return res
|
||||
|
||||
|
||||
def load_hypernetwork(filename):
|
||||
path = shared.hypernetworks.get(filename, None)
|
||||
if path is not None:
|
||||
print(f"Loading hypernetwork {filename}")
|
||||
try:
|
||||
shared.loaded_hypernetwork = Hypernetwork(path)
|
||||
except Exception:
|
||||
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if shared.loaded_hypernetwork is not None:
|
||||
print(f"Unloading hypernetwork")
|
||||
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context):
|
||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is None:
|
||||
return context, context
|
||||
|
||||
context_k = hypernetwork_layers[0](context)
|
||||
context_v = hypernetwork_layers[1](context)
|
||||
return context_k, context_v
|
||||
|
||||
|
||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
if mask is not None:
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
attn = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
|
@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module):
|
|||
if state_dict is not None:
|
||||
self.load_state_dict(state_dict, strict=True)
|
||||
else:
|
||||
self.linear1.weight.data.fill_(0.0001)
|
||||
self.linear1.bias.data.fill_(0.0001)
|
||||
self.linear2.weight.data.fill_(0.0001)
|
||||
self.linear2.bias.data.fill_(0.0001)
|
||||
|
||||
self.linear1.weight.data.normal_(mean=0.0, std=0.01)
|
||||
self.linear1.bias.data.zero_()
|
||||
self.linear2.weight.data.normal_(mean=0.0, std=0.01)
|
||||
self.linear2.bias.data.zero_()
|
||||
|
||||
self.to(devices.device)
|
||||
|
||||
|
@ -92,41 +93,54 @@ class Hypernetwork:
|
|||
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
||||
|
||||
|
||||
def load_hypernetworks(path):
|
||||
def list_hypernetworks(path):
|
||||
res = {}
|
||||
|
||||
for filename in glob.iglob(path + '**/*.pt', recursive=True):
|
||||
try:
|
||||
hn = Hypernetwork()
|
||||
hn.load(filename)
|
||||
res[hn.name] = hn
|
||||
except Exception:
|
||||
print(f"Error loading hypernetwork {filename}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
res[name] = filename
|
||||
return res
|
||||
|
||||
|
||||
def load_hypernetwork(filename):
|
||||
path = shared.hypernetworks.get(filename, None)
|
||||
if path is not None:
|
||||
print(f"Loading hypernetwork {filename}")
|
||||
try:
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
shared.loaded_hypernetwork.load(path)
|
||||
|
||||
except Exception:
|
||||
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if shared.loaded_hypernetwork is not None:
|
||||
print(f"Unloading hypernetwork")
|
||||
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is None:
|
||||
return context, context
|
||||
|
||||
if layer is not None:
|
||||
layer.hyper_k = hypernetwork_layers[0]
|
||||
layer.hyper_v = hypernetwork_layers[1]
|
||||
|
||||
context_k = hypernetwork_layers[0](context)
|
||||
context_v = hypernetwork_layers[1](context)
|
||||
return context_k, context_v
|
||||
|
||||
|
||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is not None:
|
||||
hypernetwork_k, hypernetwork_v = hypernetwork_layers
|
||||
|
||||
self.hypernetwork_k = hypernetwork_k
|
||||
self.hypernetwork_v = hypernetwork_v
|
||||
|
||||
context_k = hypernetwork_k(context)
|
||||
context_v = hypernetwork_v(context)
|
||||
else:
|
||||
context_k = context
|
||||
context_v = context
|
||||
|
||||
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
|
||||
|
@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
|||
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
|
||||
assert hypernetwork_name, 'embedding not selected'
|
||||
|
||||
shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
|
||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
shared.loaded_hypernetwork.load(path)
|
||||
|
||||
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||
shared.state.job_count = steps
|
||||
|
@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
|||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
|
||||
hypernetwork = shared.hypernetworks[hypernetwork_name]
|
||||
hypernetwork = shared.loaded_hypernetwork
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
|
@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
|||
if ititial_step > steps:
|
||||
return hypernetwork, filename
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, (x, text) in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
||||
|
|
|
@ -6,24 +6,24 @@ import gradio as gr
|
|||
import modules.textual_inversion.textual_inversion
|
||||
import modules.textual_inversion.preprocess
|
||||
from modules import sd_hijack, shared
|
||||
from modules.hypernetwork import hypernetwork
|
||||
|
||||
|
||||
def create_hypernetwork(name):
|
||||
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||
|
||||
hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
|
||||
hypernetwork.save(fn)
|
||||
hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
|
||||
hypernet.save(fn)
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
|
||||
|
||||
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
|
||||
|
||||
|
||||
def train_hypernetwork(*args):
|
||||
|
||||
initial_hypernetwork = shared.hypernetwork
|
||||
initial_hypernetwork = shared.loaded_hypernetwork
|
||||
|
||||
try:
|
||||
sd_hijack.undo_optimizations()
|
||||
|
@ -38,6 +38,6 @@ Hypernetwork saved to {html.escape(filename)}
|
|||
except Exception:
|
||||
raise
|
||||
finally:
|
||||
shared.hypernetwork = initial_hypernetwork
|
||||
shared.loaded_hypernetwork = initial_hypernetwork
|
||||
sd_hijack.apply_optimizations()
|
||||
|
||||
|
|
|
@ -8,7 +8,8 @@ from torch import einsum
|
|||
from ldm.util import default
|
||||
from einops import rearrange
|
||||
|
||||
from modules import shared, hypernetwork
|
||||
from modules import shared
|
||||
from modules.hypernetwork import hypernetwork
|
||||
|
||||
|
||||
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
||||
|
|
|
@ -13,7 +13,8 @@ import modules.memmon
|
|||
import modules.sd_models
|
||||
import modules.styles
|
||||
import modules.devices as devices
|
||||
from modules import sd_samplers, hypernetwork
|
||||
from modules import sd_samplers
|
||||
from modules.hypernetwork import hypernetwork
|
||||
from modules.paths import models_path, script_path, sd_path
|
||||
|
||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||
|
@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
|
|||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
||||
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
||||
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
|
||||
|
@ -82,10 +84,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|||
xformers_available = False
|
||||
config_filename = cmd_opts.ui_settings_file
|
||||
|
||||
hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks'))
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
loaded_hypernetwork = None
|
||||
|
||||
|
||||
def reload_hypernetworks():
|
||||
global hypernetworks
|
||||
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
|
||||
|
||||
|
||||
class State:
|
||||
skipped = False
|
||||
interrupted = False
|
||||
|
|
|
@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
|||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file):
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
|
@ -238,12 +238,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
prompt=text,
|
||||
prompt=preview_text,
|
||||
steps=20,
|
||||
height=training_height,
|
||||
width=training_width,
|
||||
height=training_height,
|
||||
width=training_width,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
|
@ -254,7 +256,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||
shared.state.current_image = image
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {text}"
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = embedding.step
|
||||
|
||||
|
|
|
@ -1023,7 +1023,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_embedding = gr.Button(value="Create", variant='primary')
|
||||
create_embedding = gr.Button(value="Create embedding", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
|
||||
|
@ -1035,7 +1035,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_hypernetwork = gr.Button(value="Create", variant='primary')
|
||||
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
||||
|
@ -1147,6 +1147,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
preview_image_prompt,
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
|
|
|
@ -10,7 +10,8 @@ import numpy as np
|
|||
import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
|
||||
from modules import images, hypernetwork
|
||||
from modules import images
|
||||
from modules.hypernetwork import hypernetwork
|
||||
from modules.processing import process_images, Processed, get_correct_sampler
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
|
|
15
webui.py
15
webui.py
|
@ -29,6 +29,7 @@ from modules import devices
|
|||
from modules import modelloader
|
||||
from modules.paths import script_path
|
||||
from modules.shared import cmd_opts
|
||||
import modules.hypernetwork.hypernetwork
|
||||
|
||||
modelloader.cleanup_models()
|
||||
modules.sd_models.setup_model()
|
||||
|
@ -77,22 +78,12 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
|
|||
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
|
||||
|
||||
|
||||
def set_hypernetwork():
|
||||
shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
|
||||
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
shared.opts.onchange("sd_hypernetwork", set_hypernetwork)
|
||||
set_hypernetwork()
|
||||
|
||||
|
||||
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
||||
|
||||
shared.sd_model = modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||
|
||||
loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
|
||||
|
||||
def webui():
|
||||
|
@ -117,7 +108,7 @@ def webui():
|
|||
prevent_thread_lock=True
|
||||
)
|
||||
|
||||
app.add_middleware(GZipMiddleware,minimum_size=1000)
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
|
||||
while 1:
|
||||
time.sleep(0.5)
|
||||
|
|
Loading…
Reference in New Issue