Merge branch 'lora_inplace'
This commit is contained in:
commit
532ac22b38
|
@ -8,14 +8,27 @@ from modules import shared, devices, sd_models, errors
|
|||
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
||||
|
||||
re_digits = re.compile(r"\d+")
|
||||
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
||||
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
|
||||
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
|
||||
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
|
||||
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
||||
re_compiled = {}
|
||||
|
||||
suffix_conversion = {
|
||||
"attentions": {},
|
||||
"resnets": {
|
||||
"conv1": "in_layers_2",
|
||||
"conv2": "out_layers_3",
|
||||
"time_emb_proj": "emb_layers_1",
|
||||
"conv_shortcut": "skip_connection",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def convert_diffusers_name_to_compvis(key):
|
||||
def match(match_list, regex):
|
||||
def convert_diffusers_name_to_compvis(key, is_sd2):
|
||||
def match(match_list, regex_text):
|
||||
regex = re_compiled.get(regex_text)
|
||||
if regex is None:
|
||||
regex = re.compile(regex_text)
|
||||
re_compiled[regex_text] = regex
|
||||
|
||||
r = re.match(regex, key)
|
||||
if not r:
|
||||
return False
|
||||
|
@ -26,16 +39,33 @@ def convert_diffusers_name_to_compvis(key):
|
|||
|
||||
m = []
|
||||
|
||||
if match(m, re_unet_down_blocks):
|
||||
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, re_unet_mid_blocks):
|
||||
return f"diffusion_model_middle_block_1_{m[1]}"
|
||||
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
||||
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
||||
|
||||
if match(m, re_unet_up_blocks):
|
||||
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
||||
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
||||
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
||||
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
||||
|
||||
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
||||
if is_sd2:
|
||||
if 'mlp_fc1' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
||||
elif 'mlp_fc2' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
||||
else:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
||||
|
||||
if match(m, re_text_block):
|
||||
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
||||
|
||||
return key
|
||||
|
@ -101,15 +131,22 @@ def load_lora(name, filename):
|
|||
|
||||
sd = sd_models.read_state_dict(filename)
|
||||
|
||||
keys_failed_to_match = []
|
||||
keys_failed_to_match = {}
|
||||
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
|
||||
|
||||
for key_diffusers, weight in sd.items():
|
||||
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
|
||||
key, lora_key = fullkey.split(".", 1)
|
||||
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1)
|
||||
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2)
|
||||
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
||||
|
||||
if sd_module is None:
|
||||
keys_failed_to_match.append(key_diffusers)
|
||||
m = re_x_proj.match(key)
|
||||
if m:
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
|
||||
|
||||
if sd_module is None:
|
||||
keys_failed_to_match[key_diffusers] = key
|
||||
continue
|
||||
|
||||
lora_module = lora.modules.get(key, None)
|
||||
|
@ -123,15 +160,21 @@ def load_lora(name, filename):
|
|||
|
||||
if type(sd_module) == torch.nn.Linear:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.MultiheadAttention:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.Conv2d:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
else:
|
||||
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
|
||||
continue
|
||||
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
|
||||
|
||||
with torch.no_grad():
|
||||
module.weight.copy_(weight)
|
||||
|
||||
module.to(device=devices.device, dtype=devices.dtype)
|
||||
module.to(device=devices.cpu, dtype=devices.dtype)
|
||||
|
||||
if lora_key == "lora_up.weight":
|
||||
lora_module.up = module
|
||||
|
@ -177,29 +220,120 @@ def load_loras(names, multipliers=None):
|
|||
loaded_loras.append(lora)
|
||||
|
||||
|
||||
def lora_forward(module, input, res):
|
||||
input = devices.cond_cast_unet(input)
|
||||
if len(loaded_loras) == 0:
|
||||
return res
|
||||
def lora_calc_updown(lora, module, target):
|
||||
with torch.no_grad():
|
||||
up = module.up.weight.to(target.device, dtype=target.dtype)
|
||||
down = module.down.weight.to(target.device, dtype=target.dtype)
|
||||
|
||||
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
|
||||
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
else:
|
||||
updown = up @ down
|
||||
|
||||
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
||||
|
||||
return updown
|
||||
|
||||
|
||||
def lora_apply_weights(self: torch.nn.Conv2d | torch.nn.Linear | torch.nn.MultiheadAttention):
|
||||
"""
|
||||
Applies the currently selected set of Loras to the weights of torch layer self.
|
||||
If weights already have this particular set of loras applied, does nothing.
|
||||
If not, restores orginal weights from backup and alters weights according to loras.
|
||||
"""
|
||||
|
||||
lora_layer_name = getattr(self, 'lora_layer_name', None)
|
||||
if lora_layer_name is None:
|
||||
return
|
||||
|
||||
current_names = getattr(self, "lora_current_names", ())
|
||||
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
|
||||
|
||||
weights_backup = getattr(self, "lora_weights_backup", None)
|
||||
if weights_backup is None:
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
||||
else:
|
||||
weights_backup = self.weight.to(devices.cpu, copy=True)
|
||||
|
||||
self.lora_weights_backup = weights_backup
|
||||
|
||||
if current_names != wanted_names:
|
||||
if weights_backup is not None:
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
self.in_proj_weight.copy_(weights_backup[0])
|
||||
self.out_proj.weight.copy_(weights_backup[1])
|
||||
else:
|
||||
self.weight.copy_(weights_backup)
|
||||
|
||||
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
||||
for lora in loaded_loras:
|
||||
module = lora.modules.get(lora_layer_name, None)
|
||||
if module is not None:
|
||||
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
|
||||
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
||||
else:
|
||||
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
||||
if module is not None and hasattr(self, 'weight'):
|
||||
self.weight += lora_calc_updown(lora, module, self.weight)
|
||||
continue
|
||||
|
||||
return res
|
||||
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
|
||||
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
|
||||
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
|
||||
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
||||
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
|
||||
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
|
||||
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
|
||||
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
||||
|
||||
self.in_proj_weight += updown_qkv
|
||||
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
|
||||
continue
|
||||
|
||||
if module is None:
|
||||
continue
|
||||
|
||||
print(f'failed to calculate lora weights for layer {lora_layer_name}')
|
||||
|
||||
setattr(self, "lora_current_names", wanted_names)
|
||||
|
||||
|
||||
def lora_reset_cached_weight(self: torch.nn.Conv2d | torch.nn.Linear):
|
||||
setattr(self, "lora_current_names", ())
|
||||
setattr(self, "lora_weights_backup", None)
|
||||
|
||||
|
||||
def lora_Linear_forward(self, input):
|
||||
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.Linear_forward_before_lora(self, input)
|
||||
|
||||
|
||||
def lora_Linear_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_Conv2d_forward(self, input):
|
||||
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.Conv2d_forward_before_lora(self, input)
|
||||
|
||||
|
||||
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_MultiheadAttention_forward(self, *args, **kwargs):
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def list_available_loras():
|
||||
|
|
|
@ -9,7 +9,11 @@ from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
|||
|
||||
def unload():
|
||||
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
||||
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
|
||||
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
||||
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
|
||||
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
|
||||
|
||||
|
||||
def before_ui():
|
||||
|
@ -20,11 +24,27 @@ def before_ui():
|
|||
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
||||
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
||||
|
||||
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
|
||||
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
|
||||
|
||||
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
||||
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
||||
|
||||
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
|
||||
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
|
||||
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
|
||||
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
|
||||
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
|
||||
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
|
||||
|
||||
torch.nn.Linear.forward = lora.lora_Linear_forward
|
||||
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
|
||||
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
||||
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
|
||||
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
|
||||
|
||||
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
||||
script_callbacks.on_script_unloaded(unload)
|
||||
|
@ -33,6 +53,4 @@ script_callbacks.on_before_ui(before_ui)
|
|||
|
||||
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
||||
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
|
||||
"lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
|
||||
|
||||
}))
|
||||
|
|
Loading…
Reference in New Issue