fix CLIP doing the unneeded normalization
revert SD2.1 back to use the original repo add SDXL's force_zero_embeddings to negative prompt
This commit is contained in:
parent
21aec6f567
commit
594c8e7b26
|
@ -344,7 +344,7 @@ class StableDiffusionProcessing:
|
|||
|
||||
def setup_conds(self):
|
||||
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
|
||||
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height)
|
||||
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
|
||||
|
||||
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
|
||||
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
|
||||
|
|
|
@ -116,11 +116,17 @@ class SdConditioning(list):
|
|||
A list with prompts for stable diffusion's conditioner model.
|
||||
Can also specify width and height of created image - SDXL needs it.
|
||||
"""
|
||||
def __init__(self, prompts, width=None, height=None):
|
||||
def __init__(self, prompts, is_negative_prompt=False, width=None, height=None, copy_from=None):
|
||||
super().__init__()
|
||||
self.extend(prompts)
|
||||
self.width = width or getattr(prompts, 'width', None)
|
||||
self.height = height or getattr(prompts, 'height', None)
|
||||
|
||||
if copy_from is None:
|
||||
copy_from = prompts
|
||||
|
||||
self.is_negative_prompt = is_negative_prompt or getattr(copy_from, 'is_negative_prompt', False)
|
||||
self.width = width or getattr(copy_from, 'width', None)
|
||||
self.height = height or getattr(copy_from, 'height', None)
|
||||
|
||||
|
||||
|
||||
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
|
||||
|
@ -153,7 +159,7 @@ def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
|
|||
res.append(cached)
|
||||
continue
|
||||
|
||||
texts = [x[1] for x in prompt_schedule]
|
||||
texts = SdConditioning([x[1] for x in prompt_schedule], copy_from=prompts)
|
||||
conds = model.get_learned_conditioning(texts)
|
||||
|
||||
cond_schedule = []
|
||||
|
|
|
@ -190,7 +190,7 @@ class StableDiffusionModelHijack:
|
|||
if typename == 'FrozenCLIPEmbedder':
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(embedder, self)
|
||||
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
|
||||
conditioner.embedders[i] = m.cond_stage_model
|
||||
if typename == 'FrozenOpenCLIPEmbedder2':
|
||||
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
|
||||
|
|
|
@ -323,3 +323,18 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
|||
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
|
||||
|
||||
return embedded
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__(wrapped, hijack)
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
|
||||
|
||||
if self.wrapped.layer == "last":
|
||||
z = outputs.last_hidden_state
|
||||
else:
|
||||
z = outputs.hidden_states[self.wrapped.layer_idx]
|
||||
|
||||
return z
|
||||
|
|
|
@ -12,7 +12,6 @@ sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "conf
|
|||
config_default = shared.sd_default_config
|
||||
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
|
||||
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
|
||||
config_sd2v = os.path.join(sd_xl_repo_configs_path, "sd_2_1_768.yaml")
|
||||
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
|
||||
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
|
||||
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
|
||||
|
|
|
@ -22,7 +22,8 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
|
|||
"target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
|
||||
}
|
||||
|
||||
c = self.conditioner(sdxl_conds)
|
||||
force_zero_negative_prompt = getattr(batch, 'is_negative_prompt', False) and all(x == '' for x in batch)
|
||||
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
|
||||
|
||||
return c
|
||||
|
||||
|
|
Loading…
Reference in New Issue