Use options instead of cmd_args

This commit is contained in:
Kohaku-Blueleaf 2023-11-19 15:50:06 +08:00
parent b60e1088db
commit 598da5cd49
6 changed files with 49 additions and 42 deletions

View File

@ -118,5 +118,3 @@ parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set time
parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False)
parser.add_argument("--disable-extra-extensions", action='store_true', help="prevent all extensions except built-in from running regardless of any other settings", default=False)
parser.add_argument("--skip-load-model-at-start", action='store_true', help="if load a model at web start, only take effect when --nowebui", )
parser.add_argument("--opt-unet-fp8-storage", action='store_true', help="use fp8 for SD UNet to save vram", default=False)
parser.add_argument("--opt-unet-fp8-storage-xl", action='store_true', help="use fp8 for SD UNet to save vram", default=False)

View File

@ -20,15 +20,15 @@ def cuda_no_autocast(device_id=None) -> bool:
if device_id is None:
device_id = get_cuda_device_id()
return (
torch.cuda.get_device_capability(device_id) == (7, 5)
torch.cuda.get_device_capability(device_id) == (7, 5)
and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16")
)
def get_cuda_device_id():
return (
int(shared.cmd_opts.device_id)
if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
int(shared.cmd_opts.device_id)
if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
else 0
) or torch.cuda.current_device()
@ -116,16 +116,19 @@ patch_module_list = [
torch.nn.LayerNorm,
]
def manual_cast_forward(self, *args, **kwargs):
org_dtype = next(self.parameters()).dtype
self.to(dtype)
args = [arg.to(dtype) if isinstance(arg, torch.Tensor) else arg for arg in args]
kwargs = {k: v.to(dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
result = self.org_forward(*args, **kwargs)
self.to(org_dtype)
return result
@contextlib.contextmanager
def manual_autocast():
def manual_cast_forward(self, *args, **kwargs):
org_dtype = next(self.parameters()).dtype
self.to(dtype)
args = [arg.to(dtype) if isinstance(arg, torch.Tensor) else arg for arg in args]
kwargs = {k: v.to(dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
result = self.org_forward(*args, **kwargs)
self.to(org_dtype)
return result
for module_type in patch_module_list:
org_forward = module_type.forward
module_type.forward = manual_cast_forward

View File

@ -177,6 +177,7 @@ def configure_opts_onchange():
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
shared.opts.onchange("fp8_storage", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)
startup_timer.record("opts onchange")

View File

@ -339,10 +339,28 @@ class SkipWritingToConfig:
SkipWritingToConfig.skip = self.previous
def check_fp8(model):
if model is None:
return None
if devices.get_optimal_device_name() == "mps":
enable_fp8 = False
elif shared.opts.fp8_storage == "Enable":
enable_fp8 = True
elif getattr(model, "is_sdxl", False) and shared.opts.fp8_storage == "Enable for SDXL":
enable_fp8 = True
else:
enable_fp8 = False
return enable_fp8
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if not check_fp8(model) and devices.fp8:
# prevent model to load state dict in fp8
model.half()
if not SkipWritingToConfig.skip:
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
@ -395,34 +413,16 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
devices.dtype_unet = torch.float16
timer.record("apply half()")
if devices.get_optimal_device_name() == "mps":
enable_fp8 = False
elif shared.cmd_opts.opt_unet_fp8_storage:
enable_fp8 = True
elif model.is_sdxl and shared.cmd_opts.opt_unet_fp8_storage_xl:
enable_fp8 = True
else:
enable_fp8 = False
if enable_fp8:
if check_fp8(model):
devices.fp8 = True
if model.is_sdxl:
cond_stage = model.conditioner
else:
cond_stage = model.cond_stage_model
for module in cond_stage.modules():
if isinstance(module, torch.nn.Linear):
first_stage = model.first_stage_model
model.first_stage_model = None
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
module.to(torch.float8_e4m3fn)
if devices.device == devices.cpu:
for module in model.model.diffusion_model.modules():
if isinstance(module, torch.nn.Conv2d):
module.to(torch.float8_e4m3fn)
elif isinstance(module, torch.nn.Linear):
module.to(torch.float8_e4m3fn)
else:
model.model.diffusion_model = model.model.diffusion_model.to(torch.float8_e4m3fn)
elif isinstance(module, torch.nn.Linear):
module.to(torch.float8_e4m3fn)
model.first_stage_model = first_stage
timer.record("apply fp8")
else:
devices.fp8 = False
@ -769,7 +769,7 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
return None
def reload_model_weights(sd_model=None, info=None):
def reload_model_weights(sd_model=None, info=None, forced_reload=False):
checkpoint_info = info or select_checkpoint()
timer = Timer()
@ -781,11 +781,14 @@ def reload_model_weights(sd_model=None, info=None):
current_checkpoint_info = None
else:
current_checkpoint_info = sd_model.sd_checkpoint_info
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
if check_fp8(sd_model) != devices.fp8:
# load from state dict again to prevent extra numerical errors
forced_reload = True
elif sd_model.sd_model_checkpoint == checkpoint_info.filename:
return sd_model
sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer)
if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
if not forced_reload and sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
return sd_model
if sd_model is not None:

View File

@ -200,6 +200,7 @@ options_templates.update(options_section(('optimizations', "Optimizations"), {
"pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
"fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Dropdown, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {

View File

@ -270,6 +270,7 @@ axis_options = [
AxisOption("Refiner checkpoint", str, apply_field('refiner_checkpoint'), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Refiner switch at", float, apply_field('refiner_switch_at')),
AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),
AxisOption("FP8 mode", str, apply_override("fp8_storage"), cost=0.9, choices=lambda: ["Disable", "Enable for SDXL", "Enable"]),
]