diff --git a/modules/processing.py b/modules/processing.py index e01c8b3f6..e567956ce 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -477,7 +477,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.firstphase_height_truncated = int(scale * self.height) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): - self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) if not self.enable_hr: x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) @@ -520,7 +520,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): shared.state.nextjob() - self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) + noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) # GC now before running the next img2img to prevent running out of memory @@ -555,7 +556,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.nmask = None def init(self, all_prompts, all_seeds, all_subseeds): - self.sampler = sd_samplers.samplers_for_img2img[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model) crop_region = None if self.image_mask is not None: diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 8d6eb7620..497df9430 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -13,46 +13,46 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases']) +SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a']), - ('Euler', 'sample_euler', ['k_euler']), - ('LMS', 'sample_lms', ['k_lms']), - ('Heun', 'sample_heun', ['k_heun']), - ('DPM2', 'sample_dpm_2', ['k_dpm_2']), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']), + ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}), + ('Euler', 'sample_euler', ['k_euler'], {}), + ('LMS', 'sample_lms', ['k_lms'], {}), + ('Heun', 'sample_heun', ['k_heun'], {}), + ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}), + ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}), + ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), + ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), + ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), + ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}), + ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}), ] -if opts.show_karras_scheduler_variants: - k_diffusion.sampling.sample_dpm_2_ka = k_diffusion.sampling.sample_dpm_2 - k_diffusion.sampling.sample_dpm_2_ancestral_ka = k_diffusion.sampling.sample_dpm_2_ancestral - k_diffusion.sampling.sample_lms_ka = k_diffusion.sampling.sample_lms - samplers_k_diffusion_ka = [ - ('LMS K Scheduling', 'sample_lms_ka', ['k_lms_ka']), - ('DPM2 K Scheduling', 'sample_dpm_2_ka', ['k_dpm_2_ka']), - ('DPM2 a K Scheduling', 'sample_dpm_2_ancestral_ka', ['k_dpm_2_a_ka']), - ] - samplers_k_diffusion.extend(samplers_k_diffusion_ka) - samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases) - for label, funcname, aliases in samplers_k_diffusion + SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) + for label, funcname, aliases, options in samplers_k_diffusion if hasattr(k_diffusion.sampling, funcname) ] all_samplers = [ *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []), + SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), ] samplers = [] samplers_for_img2img = [] +def create_sampler_with_index(list_of_configs, index, model): + config = list_of_configs[index] + sampler = config.constructor(model) + sampler.config = config + + return sampler + + def set_samplers(): global samplers, samplers_for_img2img @@ -130,6 +130,7 @@ class VanillaStableDiffusionSampler: self.step = 0 self.eta = None self.default_eta = 0.0 + self.config = None def number_of_needed_noises(self, p): return 0 @@ -291,6 +292,7 @@ class KDiffusionSampler: self.stop_at = None self.eta = None self.default_eta = 1.0 + self.config = None def callback_state(self, d): store_latent(d["denoised"]) @@ -355,11 +357,12 @@ class KDiffusionSampler: steps = steps or p.steps if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.funcname.endswith('ka'): - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device) + sigmas = p.sampler_noise_scheduler_override(steps) + elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': + sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device) else: - sigmas = self.model_wrap.get_sigmas(steps) + sigmas = self.model_wrap.get_sigmas(steps) + x = x * sigmas[0] extra_params_kwargs = self.initialize(p) diff --git a/modules/shared.py b/modules/shared.py index 9e4860a28..ca2e4c742 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -236,7 +236,6 @@ options_templates.update(options_section(('ui', "User interface"), { "font": OptionInfo("", "Font for image grids that have text"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), - "show_karras_scheduler_variants": OptionInfo(True, "Show Karras scheduling variants for select samplers. Try these variants if your K sampled images suffer from excessive noise."), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { diff --git a/scripts/alternate_sampler_noise_schedules.py b/scripts/alternate_sampler_noise_schedules.py deleted file mode 100644 index 4f3ed8fb1..000000000 --- a/scripts/alternate_sampler_noise_schedules.py +++ /dev/null @@ -1,53 +0,0 @@ -import inspect -from modules.processing import Processed, process_images -import gradio as gr -import modules.scripts as scripts -import k_diffusion.sampling -import torch - - -class Script(scripts.Script): - - def title(self): - return "Alternate Sampler Noise Schedules" - - def ui(self, is_img2img): - noise_scheduler = gr.Dropdown(label="Noise Scheduler", choices=['Default','Karras','Exponential', 'Variance Preserving'], value='Default', type="index") - sched_smin = gr.Slider(value=0.1, label="Sigma min", minimum=0.0, maximum=100.0, step=0.5,) - sched_smax = gr.Slider(value=10.0, label="Sigma max", minimum=0.0, maximum=100.0, step=0.5) - sched_rho = gr.Slider(value=7.0, label="Sigma rho (Karras only)", minimum=7.0, maximum=100.0, step=0.5) - sched_beta_d = gr.Slider(value=19.9, label="Beta distribution (VP only)",minimum=0.0, maximum=40.0, step=0.5) - sched_beta_min = gr.Slider(value=0.1, label="Beta min (VP only)", minimum=0.0, maximum=40.0, step=0.1) - sched_eps_s = gr.Slider(value=0.001, label="Epsilon (VP only)", minimum=0.001, maximum=1.0, step=0.001) - - return [noise_scheduler, sched_smin, sched_smax, sched_rho, sched_beta_d, sched_beta_min, sched_eps_s] - - def run(self, p, noise_scheduler, sched_smin, sched_smax, sched_rho, sched_beta_d, sched_beta_min, sched_eps_s): - - noise_scheduler_func_name = ['-','get_sigmas_karras','get_sigmas_exponential','get_sigmas_vp'][noise_scheduler] - - base_params = { - "sigma_min":sched_smin, - "sigma_max":sched_smax, - "rho":sched_rho, - "beta_d":sched_beta_d, - "beta_min":sched_beta_min, - "eps_s":sched_eps_s, - "device":"cuda" if torch.cuda.is_available() else "cpu" - } - - if hasattr(k_diffusion.sampling,noise_scheduler_func_name): - - sigma_func = getattr(k_diffusion.sampling,noise_scheduler_func_name) - sigma_func_kwargs = {} - - for k,v in base_params.items(): - if k in inspect.signature(sigma_func).parameters: - sigma_func_kwargs[k] = v - - def substitute_noise_scheduler(n): - return sigma_func(n,**sigma_func_kwargs) - - p.sampler_noise_scheduler_override = substitute_noise_scheduler - - return process_images(p) diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index 0ef137f7d..f9894cb01 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -8,7 +8,6 @@ import gradio as gr from modules import processing, shared, sd_samplers, prompt_parser from modules.processing import Processed -from modules.sd_samplers import samplers from modules.shared import opts, cmd_opts, state import torch @@ -159,7 +158,7 @@ class Script(scripts.Script): combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5) - sampler = samplers[p.sampler_index].constructor(p.sd_model) + sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model) sigmas = sampler.model_wrap.get_sigmas(p.steps)