diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 5ceed6ee3..7f182712b 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -429,13 +429,16 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log weights = hypernetwork.weights() for weight in weights: weight.requires_grad = True + # Here we use optimizer from saved HN, or we can specify as UI option. - if (optimizer_name := hypernetwork.optimizer_name) in optimizer_dict: + if hypernetwork.optimizer_name in optimizer_dict: optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate) + optimizer_name = hypernetwork.optimizer_name else: - print(f"Optimizer type {optimizer_name} is not defined!") + print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!") optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate) optimizer_name = 'AdamW' + if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer. try: optimizer.load_state_dict(hypernetwork.optimizer_state_dict)