Generalize SD torch load/save to implement safetensor merging compat

This commit is contained in:
Tim Patton 2022-11-20 13:36:05 -05:00
parent ac7ecd2d84
commit 637815632f
3 changed files with 1840 additions and 1826 deletions

View File

@ -249,7 +249,7 @@ def run_pnginfo(image):
return '', geninfo, info return '', geninfo, info
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name): def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, save_as_safetensors, custom_name):
def weighted_sum(theta0, theta1, alpha): def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1) return ((1 - alpha) * theta0) + (alpha * theta1)
@ -264,16 +264,16 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None) teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
print(f"Loading {primary_model_info.filename}...") print(f"Loading {primary_model_info.filename}...")
primary_model = torch.load(primary_model_info.filename, map_location='cpu') primary_model = sd_models.torch_load(primary_model_info.filename, primary_model_info, map_override='cpu')
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model) theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
print(f"Loading {secondary_model_info.filename}...") print(f"Loading {secondary_model_info.filename}...")
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu') secondary_model = sd_models.torch_load(secondary_model_info.filename, primary_model_info, map_override='cpu')
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model) theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
if teritary_model_info is not None: if teritary_model_info is not None:
print(f"Loading {teritary_model_info.filename}...") print(f"Loading {teritary_model_info.filename}...")
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu') teritary_model = sd_models.torch_load(teritary_model_info.filename, teritary_model_info, map_override='cpu')
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model) theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
else: else:
teritary_model = None teritary_model = None
@ -314,12 +314,13 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' output_exttype = '.safetensors' if save_as_safetensors else '.ckpt'
filename = filename if custom_name == '' else (custom_name + '.ckpt') filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged' + output_exttype
filename = filename if custom_name == '' else (custom_name + output_exttype)
output_modelname = os.path.join(ckpt_dir, filename) output_modelname = os.path.join(ckpt_dir, filename)
print(f"Saving to {output_modelname}...") print(f"Saving to {output_modelname}...")
torch.save(primary_model, output_modelname) sd_models.torch_save(primary_model, output_modelname)
sd_models.list_models() sd_models.list_models()

View File

@ -4,7 +4,7 @@ import sys
import gc import gc
from collections import namedtuple from collections import namedtuple
import torch import torch
from safetensors.torch import load_file from safetensors.torch import load_file, save_file
import re import re
from omegaconf import OmegaConf from omegaconf import OmegaConf
@ -143,6 +143,22 @@ def transform_checkpoint_dict_key(k):
return k return k
def torch_load(model_filename, model_info, map_override=None):
map_override=shared.weight_load_location if not map_override else map_override
if(checkpoint_types[model_info.exttype] == 'safetensors'):
# safely load weights
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
return load_file(model_filename, device=map_override)
else:
return torch.load(model_filename, map_location=map_override)
def torch_save(model, output_filename):
basename, exttype = os.path.splitext(output_filename)
if(checkpoint_types[exttype] == 'safetensors'):
# [===== >] Reticulating brines...
save_file(model, output_filename, metadata={"format": "pt"})
else:
torch.save(model, output_filename)
def get_state_dict_from_checkpoint(pl_sd): def get_state_dict_from_checkpoint(pl_sd):
if "state_dict" in pl_sd: if "state_dict" in pl_sd:
@ -175,12 +191,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
# load from file # load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
if(checkpoint_types[checkpoint_info.exttype] == 'safetensors'): pl_sd = torch_load(checkpoint_file, checkpoint_info)
# safely load weights
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
pl_sd = load_file(checkpoint_file, device=shared.weight_load_location)
else:
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
if "global_step" in pl_sd: if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}") print(f"Global Step: {pl_sd['global_step']}")

File diff suppressed because it is too large Load Diff