commit
675b51ebd3
|
@ -9,7 +9,7 @@ from omegaconf import OmegaConf
|
|||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import shared, modelloader, devices, script_callbacks
|
||||
from modules import shared, modelloader, devices, script_callbacks, sd_vae
|
||||
from modules.paths import models_path
|
||||
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||
|
||||
|
@ -159,14 +159,15 @@ def get_state_dict_from_checkpoint(pl_sd):
|
|||
return pl_sd
|
||||
|
||||
|
||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||
|
||||
|
||||
def load_model_weights(model, checkpoint_info):
|
||||
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
||||
if checkpoint_info not in checkpoints_loaded:
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
checkpoint_key = checkpoint_info
|
||||
|
||||
if checkpoint_key not in checkpoints_loaded:
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
|
@ -187,32 +188,24 @@ def load_model_weights(model, checkpoint_info):
|
|||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||
|
||||
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
||||
|
||||
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
|
||||
if os.path.exists(vae_file):
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
model.first_stage_model.load_state_dict(vae_dict)
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
if shared.opts.sd_checkpoint_cache > 0:
|
||||
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||
# if PR #4035 were to get merged, restore base VAE first before caching
|
||||
checkpoints_loaded[checkpoint_key] = model.state_dict().copy()
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
|
||||
else:
|
||||
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_info)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||
vae_name = sd_vae.get_filename(vae_file)
|
||||
print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_key)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_key])
|
||||
|
||||
model.sd_model_hash = sd_model_hash
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
sd_vae.load_vae(model, vae_file)
|
||||
|
||||
|
||||
def load_model(checkpoint_info=None):
|
||||
from modules import lowvram, sd_hijack
|
||||
|
|
|
@ -0,0 +1,207 @@
|
|||
import torch
|
||||
import os
|
||||
from collections import namedtuple
|
||||
from modules import shared, devices, script_callbacks
|
||||
from modules.paths import models_path
|
||||
import glob
|
||||
|
||||
|
||||
model_dir = "Stable-diffusion"
|
||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||
vae_dir = "VAE"
|
||||
vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
|
||||
|
||||
|
||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||
|
||||
|
||||
default_vae_dict = {"auto": "auto", "None": "None"}
|
||||
default_vae_list = ["auto", "None"]
|
||||
|
||||
|
||||
default_vae_values = [default_vae_dict[x] for x in default_vae_list]
|
||||
vae_dict = dict(default_vae_dict)
|
||||
vae_list = list(default_vae_list)
|
||||
first_load = True
|
||||
|
||||
|
||||
base_vae = None
|
||||
loaded_vae_file = None
|
||||
checkpoint_info = None
|
||||
|
||||
|
||||
def get_base_vae(model):
|
||||
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
|
||||
return base_vae
|
||||
return None
|
||||
|
||||
|
||||
def store_base_vae(model):
|
||||
global base_vae, checkpoint_info
|
||||
if checkpoint_info != model.sd_checkpoint_info:
|
||||
base_vae = model.first_stage_model.state_dict().copy()
|
||||
checkpoint_info = model.sd_checkpoint_info
|
||||
|
||||
|
||||
def delete_base_vae():
|
||||
global base_vae, checkpoint_info
|
||||
base_vae = None
|
||||
checkpoint_info = None
|
||||
|
||||
|
||||
def restore_base_vae(model):
|
||||
global base_vae, checkpoint_info
|
||||
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
|
||||
load_vae_dict(model, base_vae)
|
||||
delete_base_vae()
|
||||
|
||||
|
||||
def get_filename(filepath):
|
||||
return os.path.splitext(os.path.basename(filepath))[0]
|
||||
|
||||
|
||||
def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||
global vae_dict, vae_list
|
||||
res = {}
|
||||
candidates = [
|
||||
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
||||
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True)
|
||||
]
|
||||
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
||||
candidates.append(shared.cmd_opts.vae_path)
|
||||
for filepath in candidates:
|
||||
name = get_filename(filepath)
|
||||
res[name] = filepath
|
||||
vae_list.clear()
|
||||
vae_list.extend(default_vae_list)
|
||||
vae_list.extend(list(res.keys()))
|
||||
vae_dict.clear()
|
||||
vae_dict.update(res)
|
||||
vae_dict.update(default_vae_dict)
|
||||
return vae_list
|
||||
|
||||
|
||||
def resolve_vae(checkpoint_file, vae_file="auto"):
|
||||
global first_load, vae_dict, vae_list
|
||||
|
||||
# if vae_file argument is provided, it takes priority, but not saved
|
||||
if vae_file and vae_file not in default_vae_list:
|
||||
if not os.path.isfile(vae_file):
|
||||
vae_file = "auto"
|
||||
print("VAE provided as function argument doesn't exist")
|
||||
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
|
||||
if first_load and shared.cmd_opts.vae_path is not None:
|
||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
shared.opts.data['sd_vae'] = get_filename(vae_file)
|
||||
else:
|
||||
print("VAE provided as command line argument doesn't exist")
|
||||
# else, we load from settings
|
||||
if vae_file == "auto" and shared.opts.sd_vae is not None:
|
||||
# if saved VAE settings isn't recognized, fallback to auto
|
||||
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
|
||||
# if VAE selected but not found, fallback to auto
|
||||
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
||||
vae_file = "auto"
|
||||
print("Selected VAE doesn't exist")
|
||||
# vae-path cmd arg takes priority for auto
|
||||
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
print("Using VAE provided as command line argument")
|
||||
# if still not found, try look for ".vae.pt" beside model
|
||||
model_path = os.path.splitext(checkpoint_file)[0]
|
||||
if vae_file == "auto":
|
||||
vae_file_try = model_path + ".vae.pt"
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print("Using VAE found beside selected model")
|
||||
# if still not found, try look for ".vae.ckpt" beside model
|
||||
if vae_file == "auto":
|
||||
vae_file_try = model_path + ".vae.ckpt"
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print("Using VAE found beside selected model")
|
||||
# No more fallbacks for auto
|
||||
if vae_file == "auto":
|
||||
vae_file = None
|
||||
# Last check, just because
|
||||
if vae_file and not os.path.exists(vae_file):
|
||||
vae_file = None
|
||||
|
||||
return vae_file
|
||||
|
||||
|
||||
def load_vae(model, vae_file=None):
|
||||
global first_load, vae_dict, vae_list, loaded_vae_file
|
||||
# save_settings = False
|
||||
|
||||
if vae_file:
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
load_vae_dict(model, vae_dict_1)
|
||||
|
||||
# If vae used is not in dict, update it
|
||||
# It will be removed on refresh though
|
||||
vae_opt = get_filename(vae_file)
|
||||
if vae_opt not in vae_dict:
|
||||
vae_dict[vae_opt] = vae_file
|
||||
vae_list.append(vae_opt)
|
||||
|
||||
loaded_vae_file = vae_file
|
||||
|
||||
"""
|
||||
# Save current VAE to VAE settings, maybe? will it work?
|
||||
if save_settings:
|
||||
if vae_file is None:
|
||||
vae_opt = "None"
|
||||
|
||||
# shared.opts.sd_vae = vae_opt
|
||||
"""
|
||||
|
||||
first_load = False
|
||||
|
||||
|
||||
# don't call this from outside
|
||||
def load_vae_dict(model, vae_dict_1=None):
|
||||
if vae_dict_1:
|
||||
store_base_vae(model)
|
||||
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||
else:
|
||||
restore_base_vae()
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
|
||||
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||
from modules import lowvram, devices, sd_hijack
|
||||
|
||||
if not sd_model:
|
||||
sd_model = shared.sd_model
|
||||
|
||||
checkpoint_info = sd_model.sd_checkpoint_info
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
vae_file = resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
if loaded_vae_file == vae_file:
|
||||
return
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.send_everything_to_cpu()
|
||||
else:
|
||||
sd_model.to(devices.cpu)
|
||||
|
||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||
|
||||
load_vae(sd_model, vae_file)
|
||||
|
||||
sd_hijack.model_hijack.hijack(sd_model)
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||
sd_model.to(devices.device)
|
||||
|
||||
print(f"VAE Weights loaded.")
|
||||
return sd_model
|
|
@ -15,7 +15,7 @@ import modules.memmon
|
|||
import modules.sd_models
|
||||
import modules.styles
|
||||
import modules.devices as devices
|
||||
from modules import sd_samplers, sd_models, localization
|
||||
from modules import sd_samplers, sd_models, localization, sd_vae
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.paths import models_path, script_path, sd_path
|
||||
|
||||
|
@ -319,6 +319,7 @@ options_templates.update(options_section(('training', "Training"), {
|
|||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
|
||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
|
@ -437,10 +438,11 @@ class Options:
|
|||
if bad_settings > 0:
|
||||
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
||||
|
||||
def onchange(self, key, func):
|
||||
def onchange(self, key, func, call=True):
|
||||
item = self.data_labels.get(key)
|
||||
item.onchange = func
|
||||
|
||||
if call:
|
||||
func()
|
||||
|
||||
def dumpjson(self):
|
||||
|
|
|
@ -501,7 +501,7 @@ input[type="range"]{
|
|||
padding: 0;
|
||||
}
|
||||
|
||||
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
|
||||
#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
|
||||
max-width: 2.5em;
|
||||
min-width: 2.5em;
|
||||
height: 2.4em;
|
||||
|
|
3
webui.py
3
webui.py
|
@ -21,6 +21,7 @@ import modules.paths
|
|||
import modules.scripts
|
||||
import modules.sd_hijack
|
||||
import modules.sd_models
|
||||
import modules.sd_vae
|
||||
import modules.shared as shared
|
||||
import modules.txt2img
|
||||
import modules.script_callbacks
|
||||
|
@ -77,8 +78,10 @@ def initialize():
|
|||
|
||||
modules.scripts.load_scripts()
|
||||
|
||||
modules.sd_vae.refresh_vae_list()
|
||||
modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
||||
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
|
||||
|
|
Loading…
Reference in New Issue