extras.py: use as little RAM as possible, misc fixes

maximum of 2 models loaded at once. delete unneeded model before next
step. fix 'teritary' -> 'tertiary'. gracefully fail when "add
difference" is selected without a tertiary model
This commit is contained in:
Mackerel 2022-12-04 01:13:36 -05:00
parent 44c46f0ed3
commit 681c450ecd
1 changed files with 19 additions and 18 deletions

View File

@ -234,7 +234,7 @@ def run_pnginfo(image):
return '', geninfo, info return '', geninfo, info
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format): def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
def weighted_sum(theta0, theta1, alpha): def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1) return ((1 - alpha) * theta0) + (alpha * theta1)
@ -246,30 +246,25 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
primary_model_info = sd_models.checkpoints_list[primary_model_name] primary_model_info = sd_models.checkpoints_list[primary_model_name]
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None) tertiary_model_info = sd_models.checkpoints_list.get(tertiary_model_name, None)
result_is_inpainting_model = False result_is_inpainting_model = False
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
if teritary_model_info is not None:
print(f"Loading {teritary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(teritary_model_info.filename, map_location='cpu')
else:
theta_2 = None
theta_funcs = { theta_funcs = {
"Weighted sum": (None, weighted_sum), "Weighted sum": (None, weighted_sum),
"Add difference": (get_difference, add_difference), "Add difference": (get_difference, add_difference),
} }
theta_func1, theta_func2 = theta_funcs[interp_method] theta_func1, theta_func2 = theta_funcs[interp_method]
print(f"Merging...") if theta_func1 and not tertiary_model_info:
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
if theta_func1: if theta_func1:
print(f"Loading {tertiary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
for key in tqdm.tqdm(theta_1.keys()): for key in tqdm.tqdm(theta_1.keys()):
if 'model' in key: if 'model' in key:
if key in theta_2: if key in theta_2:
@ -279,6 +274,11 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
theta_1[key] = torch.zeros_like(theta_1[key]) theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2 del theta_2
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
print("Merging...")
for key in tqdm.tqdm(theta_0.keys()): for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1: if 'model' in key and key in theta_1:
a = theta_0[key] a = theta_0[key]
@ -307,6 +307,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
theta_0[key] = theta_1[key] theta_0[key] = theta_1[key]
if save_as_half: if save_as_half:
theta_0[key] = theta_0[key].half() theta_0[key] = theta_0[key].half()
del theta_1
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
@ -332,5 +333,5 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
sd_models.list_models() sd_models.list_models()
print(f"Checkpoint saved.") print("Checkpoint saved.")
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)] return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]