Merge pull request #14871 from v0xie/boft

Support inference with LyCORIS BOFT networks
This commit is contained in:
AUTOMATIC1111 2024-02-19 10:05:30 +03:00 committed by GitHub
commit 6e4fc5e1a8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 48 additions and 10 deletions

View File

@ -22,6 +22,8 @@ class NetworkModuleOFT(network.NetworkModule):
self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0
self.is_kohya = False
self.is_boft = False
# kohya-ss
if "oft_blocks" in weights.w.keys():
@ -29,13 +31,19 @@ class NetworkModuleOFT(network.NetworkModule):
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
self.alpha = weights.w["alpha"] # alpha is constraint
self.dim = self.oft_blocks.shape[0] # lora dim
# LyCORIS
# LyCORIS OFT
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
# LyCORIS BOFT
if weights.w["oft_diag"].dim() == 4:
self.is_boft = True
self.rescale = weights.w.get('rescale', None)
if self.rescale is not None:
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
@ -51,6 +59,13 @@ class NetworkModuleOFT(network.NetworkModule):
self.constraint = self.alpha * self.out_dim
self.num_blocks = self.dim
self.block_size = self.out_dim // self.dim
elif self.is_boft:
self.constraint = None
self.boft_m = weights.w["oft_diag"].shape[0]
self.block_num = weights.w["oft_diag"].shape[1]
self.block_size = weights.w["oft_diag"].shape[2]
self.boft_b = self.block_size
#self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim)
else:
self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
@ -68,14 +83,37 @@ class NetworkModuleOFT(network.NetworkModule):
R = oft_blocks.to(orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
if not self.is_boft:
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
else:
# TODO: determine correct value for scale
scale = 1.0
m = self.boft_m
b = self.boft_b
r_b = b // 2
inp = orig_weight
for i in range(m):
bi = R[i] # b_num, b_size, b_size
if i == 0:
# Apply multiplier/scale and rescale into first weight
bi = bi * scale + (1 - scale) * eye
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
inp = rearrange(inp, "d b ... -> (d b) ...")
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
merged_weight = inp
# Rescale mechanism
if self.rescale is not None:
merged_weight = self.rescale.to(merged_weight) * merged_weight
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape