Deduplicate tiled inference code from SwinIR/ScuNET
This commit is contained in:
parent
ce21840a04
commit
6f86b62a1b
|
@ -3,12 +3,11 @@ import sys
|
||||||
import PIL.Image
|
import PIL.Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import devices, modelloader, script_callbacks, errors
|
from modules import devices, modelloader, script_callbacks, errors
|
||||||
|
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
|
from modules.upscaler_utils import tiled_upscale_2
|
||||||
|
|
||||||
|
|
||||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
|
@ -40,47 +39,6 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
scalers.append(scaler_data2)
|
scalers.append(scaler_data2)
|
||||||
self.scalers = scalers
|
self.scalers = scalers
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
@torch.no_grad()
|
|
||||||
def tiled_inference(img, model):
|
|
||||||
# test the image tile by tile
|
|
||||||
h, w = img.shape[2:]
|
|
||||||
tile = opts.SCUNET_tile
|
|
||||||
tile_overlap = opts.SCUNET_tile_overlap
|
|
||||||
if tile == 0:
|
|
||||||
return model(img)
|
|
||||||
|
|
||||||
device = devices.get_device_for('scunet')
|
|
||||||
assert tile % 8 == 0, "tile size should be a multiple of window_size"
|
|
||||||
sf = 1
|
|
||||||
|
|
||||||
stride = tile - tile_overlap
|
|
||||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
||||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
||||||
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
|
|
||||||
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
|
||||||
|
|
||||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
|
|
||||||
for h_idx in h_idx_list:
|
|
||||||
|
|
||||||
for w_idx in w_idx_list:
|
|
||||||
|
|
||||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
||||||
|
|
||||||
out_patch = model(in_patch)
|
|
||||||
out_patch_mask = torch.ones_like(out_patch)
|
|
||||||
|
|
||||||
E[
|
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
||||||
].add_(out_patch)
|
|
||||||
W[
|
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
||||||
].add_(out_patch_mask)
|
|
||||||
pbar.update(1)
|
|
||||||
output = E.div_(W)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
@ -104,7 +62,16 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
_img[:, :, :h, :w] = torch_img # pad image
|
_img[:, :, :h, :w] = torch_img # pad image
|
||||||
torch_img = _img
|
torch_img = _img
|
||||||
|
|
||||||
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
|
with torch.no_grad():
|
||||||
|
torch_output = tiled_upscale_2(
|
||||||
|
torch_img,
|
||||||
|
model,
|
||||||
|
tile_size=opts.SCUNET_tile,
|
||||||
|
tile_overlap=opts.SCUNET_tile_overlap,
|
||||||
|
scale=1,
|
||||||
|
device=devices.get_device_for('scunet'),
|
||||||
|
desc="ScuNET tiles",
|
||||||
|
).squeeze(0)
|
||||||
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
||||||
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
||||||
del torch_img, torch_output
|
del torch_img, torch_output
|
||||||
|
|
|
@ -4,11 +4,11 @@ import sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
from modules import modelloader, devices, script_callbacks, shared
|
from modules import modelloader, devices, script_callbacks, shared
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
|
from modules.upscaler_utils import tiled_upscale_2
|
||||||
|
|
||||||
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
|
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
|
||||||
|
|
||||||
|
@ -110,14 +110,14 @@ def upscale(
|
||||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||||
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
||||||
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
||||||
output = inference(
|
output = tiled_upscale_2(
|
||||||
img,
|
img,
|
||||||
model,
|
model,
|
||||||
tile=tile,
|
tile_size=tile,
|
||||||
tile_overlap=tile_overlap,
|
tile_overlap=tile_overlap,
|
||||||
window_size=window_size,
|
|
||||||
scale=scale,
|
scale=scale,
|
||||||
device=device,
|
device=device,
|
||||||
|
desc="SwinIR tiles",
|
||||||
)
|
)
|
||||||
output = output[..., : h_old * scale, : w_old * scale]
|
output = output[..., : h_old * scale, : w_old * scale]
|
||||||
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
|
@ -129,53 +129,6 @@ def upscale(
|
||||||
return Image.fromarray(output, "RGB")
|
return Image.fromarray(output, "RGB")
|
||||||
|
|
||||||
|
|
||||||
def inference(
|
|
||||||
img,
|
|
||||||
model,
|
|
||||||
*,
|
|
||||||
tile: int,
|
|
||||||
tile_overlap: int,
|
|
||||||
window_size: int,
|
|
||||||
scale: int,
|
|
||||||
device,
|
|
||||||
):
|
|
||||||
# test the image tile by tile
|
|
||||||
b, c, h, w = img.size()
|
|
||||||
tile = min(tile, h, w)
|
|
||||||
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
|
||||||
sf = scale
|
|
||||||
|
|
||||||
stride = tile - tile_overlap
|
|
||||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
||||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
||||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device).type_as(img)
|
|
||||||
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
|
||||||
|
|
||||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
|
||||||
for h_idx in h_idx_list:
|
|
||||||
if state.interrupted or state.skipped:
|
|
||||||
break
|
|
||||||
|
|
||||||
for w_idx in w_idx_list:
|
|
||||||
if state.interrupted or state.skipped:
|
|
||||||
break
|
|
||||||
|
|
||||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
||||||
out_patch = model(in_patch)
|
|
||||||
out_patch_mask = torch.ones_like(out_patch)
|
|
||||||
|
|
||||||
E[
|
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
||||||
].add_(out_patch)
|
|
||||||
W[
|
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
||||||
].add_(out_patch_mask)
|
|
||||||
pbar.update(1)
|
|
||||||
output = E.div_(W)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def on_ui_settings():
|
def on_ui_settings():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
|
|
@ -6,7 +6,7 @@ import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
from modules import images
|
from modules import images, shared
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
@ -68,3 +68,73 @@ def upscale_with_model(
|
||||||
overlap=grid.overlap * scale_factor,
|
overlap=grid.overlap * scale_factor,
|
||||||
)
|
)
|
||||||
return images.combine_grid(newgrid)
|
return images.combine_grid(newgrid)
|
||||||
|
|
||||||
|
|
||||||
|
def tiled_upscale_2(
|
||||||
|
img,
|
||||||
|
model,
|
||||||
|
*,
|
||||||
|
tile_size: int,
|
||||||
|
tile_overlap: int,
|
||||||
|
scale: int,
|
||||||
|
device,
|
||||||
|
desc="Tiled upscale",
|
||||||
|
):
|
||||||
|
# Alternative implementation of `upscale_with_model` originally used by
|
||||||
|
# SwinIR and ScuNET. It differs from `upscale_with_model` in that tiling and
|
||||||
|
# weighting is done in PyTorch space, as opposed to `images.Grid` doing it in
|
||||||
|
# Pillow space without weighting.
|
||||||
|
b, c, h, w = img.size()
|
||||||
|
tile_size = min(tile_size, h, w)
|
||||||
|
|
||||||
|
if tile_size <= 0:
|
||||||
|
logger.debug("Upscaling %s without tiling", img.shape)
|
||||||
|
return model(img)
|
||||||
|
|
||||||
|
stride = tile_size - tile_overlap
|
||||||
|
h_idx_list = list(range(0, h - tile_size, stride)) + [h - tile_size]
|
||||||
|
w_idx_list = list(range(0, w - tile_size, stride)) + [w - tile_size]
|
||||||
|
result = torch.zeros(
|
||||||
|
b,
|
||||||
|
c,
|
||||||
|
h * scale,
|
||||||
|
w * scale,
|
||||||
|
device=device,
|
||||||
|
).type_as(img)
|
||||||
|
weights = torch.zeros_like(result)
|
||||||
|
logger.debug("Upscaling %s to %s with tiles", img.shape, result.shape)
|
||||||
|
with tqdm.tqdm(total=len(h_idx_list) * len(w_idx_list), desc=desc) as pbar:
|
||||||
|
for h_idx in h_idx_list:
|
||||||
|
if shared.state.interrupted or shared.state.skipped:
|
||||||
|
break
|
||||||
|
|
||||||
|
for w_idx in w_idx_list:
|
||||||
|
if shared.state.interrupted or shared.state.skipped:
|
||||||
|
break
|
||||||
|
|
||||||
|
in_patch = img[
|
||||||
|
...,
|
||||||
|
h_idx : h_idx + tile_size,
|
||||||
|
w_idx : w_idx + tile_size,
|
||||||
|
]
|
||||||
|
out_patch = model(in_patch)
|
||||||
|
|
||||||
|
result[
|
||||||
|
...,
|
||||||
|
h_idx * scale : (h_idx + tile_size) * scale,
|
||||||
|
w_idx * scale : (w_idx + tile_size) * scale,
|
||||||
|
].add_(out_patch)
|
||||||
|
|
||||||
|
out_patch_mask = torch.ones_like(out_patch)
|
||||||
|
|
||||||
|
weights[
|
||||||
|
...,
|
||||||
|
h_idx * scale : (h_idx + tile_size) * scale,
|
||||||
|
w_idx * scale : (w_idx + tile_size) * scale,
|
||||||
|
].add_(out_patch_mask)
|
||||||
|
|
||||||
|
pbar.update(1)
|
||||||
|
|
||||||
|
output = result.div_(weights)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
Loading…
Reference in New Issue