diff --git a/modules/sd_models.py b/modules/sd_models.py index 91ad4b5e9..850f7b7ba 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -160,11 +160,15 @@ def get_state_dict_from_checkpoint(pl_sd): vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -def load_model_weights(model, checkpoint_info, force=False): +def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if force or checkpoint_info not in checkpoints_loaded: + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + + checkpoint_key = (checkpoint_info, vae_file) + + if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -185,24 +189,25 @@ def load_model_weights(model, checkpoint_info, force=False): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, checkpoint_file) + sd_vae.load_vae(model, vae_file) model.first_stage_model.to(devices.dtype_vae) if shared.opts.sd_checkpoint_cache > 0: - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU else: - print(f"Loading weights [{sd_model_hash}] from cache") - checkpoints_loaded.move_to_end(checkpoint_info) - model.load_state_dict(checkpoints_loaded[checkpoint_info]) + vae_name = sd_vae.get_filename(vae_file) + print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") + checkpoints_loaded.move_to_end(checkpoint_key) + model.load_state_dict(checkpoints_loaded[checkpoint_key]) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info -def load_model(checkpoint_info=None, force=False): +def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -223,7 +228,7 @@ def load_model(checkpoint_info=None, force=False): do_inpainting_hijack() sd_model = instantiate_from_config(sd_config.model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) @@ -250,7 +255,7 @@ def reload_model_weights(sd_model, info=None, force=False): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - load_model(checkpoint_info, force=force) + load_model(checkpoint_info) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -260,7 +265,7 @@ def reload_model_weights(sd_model, info=None, force=False): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 2ce44d5fc..e9239326d 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -43,7 +43,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list -def load_vae(model, checkpoint_file, vae_file="auto"): +def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -94,6 +94,12 @@ def load_vae(model, checkpoint_file, vae_file="auto"): if vae_file and not os.path.exists(vae_file): vae_file = None + return vae_file + +def load_vae(model, vae_file): + global first_load, vae_dict, vae_list + # save_settings = False + if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)