diff --git a/modules/extras.py b/modules/extras.py index 38d6ec484..3d9d9f7a8 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -111,8 +111,9 @@ def run_pnginfo(image): items['exif comment'] = exif_comment - for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif']: - del items[field] + for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', + 'loop', 'background', 'timestamp', 'duration']: + items.pop(field, None) info = '' diff --git a/modules/processing.py b/modules/processing.py index 3a4ff224b..6a99d3837 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -188,7 +188,11 @@ def fix_seed(p): def process_images(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" - assert p.prompt is not None + if type(p.prompt) == list: + assert(len(p.prompt) > 0) + else: + assert p.prompt is not None + devices.torch_gc() fix_seed(p) @@ -265,6 +269,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] + if (len(prompts) == 0): + break + #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) #c = p.sd_model.get_learned_conditioning(prompts) uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps) diff --git a/script.js b/script.js index e63e06956..a016eb4ec 100644 --- a/script.js +++ b/script.js @@ -76,6 +76,41 @@ function gradioApp(){ global_progressbar = null +function closeModal() { + gradioApp().getElementById("lightboxModal").style.display = "none"; +} + +function showModal(elem) { + gradioApp().getElementById("modalImage").src = elem.src + gradioApp().getElementById("lightboxModal").style.display = "block"; +} + +function showGalleryImage(){ + setTimeout(function() { + fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain') + + if(fullImg_preview != null){ + fullImg_preview.forEach(function function_name(e) { + if(e && e.parentElement.tagName == 'DIV'){ + e.style.cursor='pointer' + + elemfunc = function(elem){ + elem.onclick = function(){showModal(elem)}; + } + elemfunc(e) + } + }); + } + + }, 100); +} + +function galleryImageHandler(e){ + if(e && e.parentElement.tagName == 'BUTTON'){ + e.onclick = showGalleryImage; + } +} + function addTitles(root){ root.querySelectorAll('span, button, select').forEach(function(span){ tooltip = titles[span.textContent]; @@ -117,13 +152,18 @@ function addTitles(root){ img2img_preview.style.width = img2img_gallery.clientWidth + "px" img2img_preview.style.height = img2img_gallery.clientHeight + "px" } - - + window.setTimeout(requestProgress, 500) }); mutationObserver.observe( progressbar, { childList:true, subtree:true }) } + + fullImg_preview = gradioApp().querySelectorAll('img.w-full') + if(fullImg_preview != null){ + fullImg_preview.forEach(galleryImageHandler); + } + } document.addEventListener("DOMContentLoaded", function() { @@ -131,6 +171,27 @@ document.addEventListener("DOMContentLoaded", function() { addTitles(gradioApp()); }); mutationObserver.observe( gradioApp(), { childList:true, subtree:true }) + + const modalFragment = document.createDocumentFragment(); + const modal = document.createElement('div') + modal.onclick = closeModal; + + const modalClose = document.createElement('span') + modalClose.className = 'modalClose cursor'; + modalClose.innerHTML = '×' + modalClose.onclick = closeModal; + modal.id = "lightboxModal"; + modal.appendChild(modalClose) + + const modalImage = document.createElement('img') + modalImage.id = 'modalImage'; + modalImage.onclick = closeModal; + modal.appendChild(modalImage) + + gradioApp().getRootNode().appendChild(modal) + + document.body.appendChild(modalFragment); + }); function selected_gallery_index(){ diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index d9b01c81b..513d9a1c5 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -13,28 +13,42 @@ from modules.shared import opts, cmd_opts, state class Script(scripts.Script): def title(self): - return "Prompts from file" + return "Prompts from file or textbox" def ui(self, is_img2img): + # This checkbox would look nicer as two tabs, but there are two problems: + # 1) There is a bug in Gradio 3.3 that prevents visibility from working on Tabs + # 2) Even with Gradio 3.3.1, returning a control (like Tabs) that can't be used as input + # causes a AttributeError: 'Tabs' object has no attribute 'preprocess' assert, + # due to the way Script assumes all controls returned can be used as inputs. + # Therefore, there's no good way to use grouping components right now, + # so we will use a checkbox! :) + checkbox_txt = gr.Checkbox(label="Show Textbox", value=False) file = gr.File(label="File with inputs", type='bytes') + prompt_txt = gr.TextArea(label="Prompts") + checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt]) + return [checkbox_txt, file, prompt_txt] - return [file] - - def run(self, p, data: bytes): - lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] + def run(self, p, checkbox_txt, data: bytes, prompt_txt: str): + if (checkbox_txt): + lines = [x.strip() for x in prompt_txt.splitlines()] + else: + lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] lines = [x for x in lines if len(x) > 0] - batch_count = math.ceil(len(lines) / p.batch_size) - print(f"Will process {len(lines) * p.n_iter} images in {batch_count * p.n_iter} batches.") + img_count = len(lines) * p.n_iter + batch_count = math.ceil(img_count / p.batch_size) + loop_count = math.ceil(batch_count / p.n_iter) + print(f"Will process {img_count} images in {batch_count} batches.") p.do_not_save_grid = True state.job_count = batch_count images = [] - for batch_no in range(batch_count): - state.job = f"{batch_no + 1} out of {batch_count * p.n_iter}" - p.prompt = lines[batch_no*p.batch_size:(batch_no+1)*p.batch_size] * p.n_iter + for loop_no in range(loop_count): + state.job = f"{loop_no + 1} out of {loop_count}" + p.prompt = lines[loop_no*p.batch_size:(loop_no+1)*p.batch_size] * p.n_iter proc = process_images(p) images += proc.images diff --git a/style.css b/style.css index 752d2cf42..2bdd1e0e3 100644 --- a/style.css +++ b/style.css @@ -196,3 +196,40 @@ input[type="range"]{ border-radius: 8px; } +#lightboxModal{ + display: none; + position: fixed; + z-index: 900; + padding-top: 100px; + left: 0; + top: 0; + width: 100%; + height: 100%; + overflow: auto; + background-color: rgba(20, 20, 20, 0.95); +} + +.modalClose { + color: white; + position: absolute; + top: 10px; + right: 25px; + font-size: 35px; + font-weight: bold; +} + +.modalClose:hover, +.modalClose:focus { + color: #999; + text-decoration: none; + cursor: pointer; +} + +#modalImage { + display: block; + margin-left: auto; + margin-right: auto; + margin-top: auto; + width: auto; +} +