Merge branch 'master' of https://github.com/AUTOMATIC1111/stable-diffusion-webui
This commit is contained in:
commit
781f054a20
|
@ -146,3 +146,12 @@ to get otherwise.
|
|||
Example: (cherrypicked result; original picture by anon)
|
||||
|
||||
![](images/loopback.jpg)
|
||||
|
||||
### Png info
|
||||
Adds information about generation parameters to PNG as a text chunk. You
|
||||
can view this information later using any software that supports viewing
|
||||
PNG chunk info, for example: https://www.nayuki.io/page/png-file-chunk-inspector
|
||||
|
||||
This can be disabled using the `--disable-pnginfo` command line option.
|
||||
|
||||
![](images/pnginfo.png)
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 113 KiB |
104
webui.py
104
webui.py
|
@ -4,7 +4,7 @@ import torch.nn as nn
|
|||
import numpy as np
|
||||
import gradio as gr
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageFont, ImageDraw
|
||||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
||||
from itertools import islice
|
||||
from einops import rearrange, repeat
|
||||
from torch import autocast
|
||||
|
@ -12,6 +12,8 @@ from contextlib import contextmanager, nullcontext
|
|||
import mimetypes
|
||||
import random
|
||||
import math
|
||||
import html
|
||||
import time
|
||||
|
||||
import k_diffusion as K
|
||||
from ldm.util import instantiate_from_config
|
||||
|
@ -49,8 +51,13 @@ parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=(
|
|||
parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long")
|
||||
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--save-format", type=str, default='png', help="file format for saved indiviual samples; can be png or jpg")
|
||||
parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg")
|
||||
parser.add_argument("--grid-extended-filename", action='store_true', help="save grid images to filenames with extended info: seed, prompt")
|
||||
parser.add_argument("--jpeg-quality", type=int, default=80, help="quality for saved jpeg images")
|
||||
parser.add_argument("--disable-pnginfo", action='store_true', help="disable saving text information about generation parameters as chunks to png files")
|
||||
|
||||
parser.add_argument("--inversion", action='store_true', help="switch to stable inversion version; allows for uploading embeddings; this option should be used only with textual inversion repo")
|
||||
opt = parser.parse_args()
|
||||
|
||||
|
@ -130,6 +137,37 @@ def create_random_tensors(shape, seeds):
|
|||
return x
|
||||
|
||||
|
||||
def torch_gc():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def sanitize_filename_part(text):
|
||||
return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]
|
||||
|
||||
|
||||
def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False):
|
||||
prompt = sanitize_filename_part(prompt)
|
||||
|
||||
if short_filename:
|
||||
filename = f"{basename}.{extension}"
|
||||
else:
|
||||
filename = f"{basename}-{seed}-{prompt[:128]}.{extension}"
|
||||
|
||||
if extension == 'png' and not opt.disable_pnginfo:
|
||||
pnginfo = PngImagePlugin.PngInfo()
|
||||
pnginfo.add_text("parameters", info)
|
||||
else:
|
||||
pnginfo = None
|
||||
|
||||
image.save(os.path.join(path, filename), quality=opt.jpeg_quality, pnginfo=pnginfo)
|
||||
|
||||
|
||||
def plaintext_to_html(text):
|
||||
text = "".join([f"<p>{html.escape(x)}</p>\n" for x in text.split('\n')])
|
||||
return text
|
||||
|
||||
|
||||
def load_GFPGAN():
|
||||
model_name = 'GFPGANv1.3'
|
||||
model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
||||
|
@ -301,11 +339,25 @@ def check_prompt_length(prompt, comments):
|
|||
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
|
||||
def wrap_gradio_call(func):
|
||||
def f(*p1, **p2):
|
||||
t = time.perf_counter()
|
||||
res = list(func(*p1, **p2))
|
||||
elapsed = time.perf_counter() - t
|
||||
|
||||
# last item is always HTML
|
||||
res[-1] = res[-1] + f"<p class='performance'>Time taken: {elapsed:.2f}s</p>"
|
||||
|
||||
return tuple(res)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, do_not_save_grid=False):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
|
||||
assert prompt is not None
|
||||
torch.cuda.empty_cache()
|
||||
torch_gc()
|
||||
|
||||
if seed == -1:
|
||||
seed = random.randrange(4294967294)
|
||||
|
@ -351,6 +403,11 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
|||
all_prompts = batch_size * n_iter * [prompt]
|
||||
all_seeds = [seed + x for x in range(len(all_prompts))]
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip() + "".join(["\n\n" + x for x in comments])
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
output_images = []
|
||||
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
||||
|
@ -385,9 +442,7 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
|||
x_sample = restored_img
|
||||
|
||||
image = Image.fromarray(x_sample)
|
||||
filename = f"{base_count:05}-{seeds[i]}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png"
|
||||
|
||||
image.save(os.path.join(sample_path, filename))
|
||||
save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opt.save_format, info=info)
|
||||
|
||||
output_images.append(image)
|
||||
base_count += 1
|
||||
|
@ -406,17 +461,10 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
|||
|
||||
output_images.insert(0, grid)
|
||||
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{opt.grid_format}'))
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename)
|
||||
grid_count += 1
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip()
|
||||
|
||||
for comment in comments:
|
||||
info += "\n\n" + comment
|
||||
|
||||
torch_gc()
|
||||
return output_images, seed, info
|
||||
|
||||
|
||||
|
@ -465,7 +513,7 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, p
|
|||
|
||||
del sampler
|
||||
|
||||
return output_images, seed, info
|
||||
return output_images, seed, plaintext_to_html(info)
|
||||
|
||||
|
||||
class Flagging(gr.FlaggingCallback):
|
||||
|
@ -510,7 +558,7 @@ class Flagging(gr.FlaggingCallback):
|
|||
|
||||
|
||||
txt2img_interface = gr.Interface(
|
||||
txt2img,
|
||||
wrap_gradio_call(txt2img),
|
||||
inputs=[
|
||||
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
|
@ -529,7 +577,7 @@ txt2img_interface = gr.Interface(
|
|||
outputs=[
|
||||
gr.Gallery(label="Images"),
|
||||
gr.Number(label='Seed'),
|
||||
gr.Textbox(label="Copy-paste generation parameters"),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="Stable Diffusion Text-to-Image K",
|
||||
description="Generate images from text with Stable Diffusion (using K-LMS)",
|
||||
|
@ -608,7 +656,8 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
|||
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
grid = image_grid(history, batch_size, force_n_rows=1)
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{opt.grid_format}'))
|
||||
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename)
|
||||
|
||||
output_images = history
|
||||
seed = initial_seed
|
||||
|
@ -633,14 +682,14 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
|||
|
||||
del sampler
|
||||
|
||||
return output_images, seed, info
|
||||
return output_images, seed, plaintext_to_html(info)
|
||||
|
||||
|
||||
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
||||
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
|
||||
|
||||
img2img_interface = gr.Interface(
|
||||
img2img,
|
||||
wrap_gradio_call(img2img),
|
||||
inputs=[
|
||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
||||
gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"),
|
||||
|
@ -661,7 +710,7 @@ img2img_interface = gr.Interface(
|
|||
outputs=[
|
||||
gr.Gallery(),
|
||||
gr.Number(label='Seed'),
|
||||
gr.Textbox(label="Copy-paste generation parameters"),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="Stable Diffusion Image-to-Image",
|
||||
description="Generate images from images with Stable Diffusion",
|
||||
|
@ -682,7 +731,7 @@ def run_GFPGAN(image, strength):
|
|||
if strength < 1.0:
|
||||
res = Image.blend(image, res, strength)
|
||||
|
||||
return res
|
||||
return res, 0, ''
|
||||
|
||||
|
||||
if GFPGAN is not None:
|
||||
|
@ -694,6 +743,8 @@ if GFPGAN is not None:
|
|||
],
|
||||
outputs=[
|
||||
gr.Image(label="Result"),
|
||||
gr.Number(label='Seed', visible=False),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="GFPGAN",
|
||||
description="Fix faces on images",
|
||||
|
@ -704,7 +755,10 @@ if GFPGAN is not None:
|
|||
demo = gr.TabbedInterface(
|
||||
interface_list=[x[0] for x in interfaces],
|
||||
tab_names=[x[1] for x in interfaces],
|
||||
css=("" if opt.no_progressbar_hiding else css_hide_progressbar)
|
||||
css=("" if opt.no_progressbar_hiding else css_hide_progressbar) + """
|
||||
.output-html p {margin: 0 0.5em;}
|
||||
.performance { font-size: 0.85em; color: #444; }
|
||||
"""
|
||||
)
|
||||
|
||||
demo.launch()
|
Loading…
Reference in New Issue