fix for live progress breaking lowvram and medvram optimizations
This commit is contained in:
parent
0bfa0d4381
commit
7ce7fb01e0
|
@ -33,6 +33,9 @@ A browser interface based on Gradio library for Stable Diffusion.
|
|||
- Running custom code from UI
|
||||
- Mouseover hints fo most UI elements
|
||||
- Possible to change defaults/mix/max/step values for UI elements via text config
|
||||
- Random artist button
|
||||
- Tiling support: UI checkbox to create images that can be tiled like textures
|
||||
- Progress bar and live image generation preview
|
||||
|
||||
## Installing and running
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
from collections import namedtuple
|
||||
|
||||
import ldm.models.diffusion.ddim
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from PIL import Image
|
||||
|
||||
import k_diffusion.sampling
|
||||
import ldm.models.diffusion.ddim
|
||||
|
@ -37,12 +37,28 @@ samplers = [
|
|||
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
|
||||
|
||||
|
||||
def sample_to_image(samples):
|
||||
x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0]
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
return Image.fromarray(x_sample)
|
||||
|
||||
|
||||
def store_latent(decoded):
|
||||
state.current_latent = decoded
|
||||
|
||||
if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
|
||||
if not shared.parallel_processing_allowed:
|
||||
shared.state.current_image = sample_to_image(decoded)
|
||||
|
||||
|
||||
def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs):
|
||||
if sampler_wrapper.mask is not None:
|
||||
img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts)
|
||||
x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec
|
||||
|
||||
state.current_latent = x_dec
|
||||
store_latent(x_dec)
|
||||
|
||||
return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs)
|
||||
|
||||
|
@ -144,7 +160,7 @@ class KDiffusionSampler:
|
|||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
|
||||
def callback_state(self, d):
|
||||
state.current_latent = d["denoised"]
|
||||
store_latent(d["denoised"])
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||
|
|
|
@ -38,7 +38,7 @@ cpu = torch.device("cpu")
|
|||
gpu = torch.device("cuda")
|
||||
device = gpu if torch.cuda.is_available() else cpu
|
||||
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
||||
|
||||
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
||||
|
||||
class State:
|
||||
interrupted = False
|
||||
|
@ -49,7 +49,8 @@ class State:
|
|||
sampling_steps = 0
|
||||
current_latent = None
|
||||
current_image = None
|
||||
current_progress_index = 0
|
||||
current_image_sampling_step = 0
|
||||
|
||||
|
||||
def interrupt(self):
|
||||
self.interrupted = True
|
||||
|
@ -57,6 +58,7 @@ class State:
|
|||
def nextjob(self):
|
||||
self.job_no += 1
|
||||
self.sampling_step = 0
|
||||
self.current_image_sampling_step = 0
|
||||
|
||||
|
||||
state = State()
|
||||
|
@ -103,7 +105,7 @@ class Options:
|
|||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||
"upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}),
|
||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N progress pudates. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
}
|
||||
|
||||
def __init__(self):
|
||||
|
|
|
@ -160,13 +160,11 @@ def check_progress_call():
|
|||
preview_visibility = gr_show(False)
|
||||
|
||||
if opts.show_progress_every_n_steps > 0:
|
||||
if shared.state.current_progress_index % opts.show_progress_every_n_steps == 0 and shared.state.current_latent is not None:
|
||||
x_sample = shared.sd_model.decode_first_stage(shared.state.current_latent[0:1].type(shared.sd_model.dtype))[0]
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
shared.state.current_image = Image.fromarray(x_sample)
|
||||
if shared.parallel_processing_allowed:
|
||||
|
||||
if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None:
|
||||
shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent)
|
||||
shared.state.current_image_sampling_step = shared.state.sampling_step
|
||||
|
||||
image = shared.state.current_image
|
||||
|
||||
|
@ -175,8 +173,6 @@ def check_progress_call():
|
|||
else:
|
||||
preview_visibility = gr_show(True)
|
||||
|
||||
shared.state.current_progress_index += 1
|
||||
|
||||
return f"<span style='display: none'>{time.time()}</span><p>{progressbar}</p>", preview_visibility, image
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue