apply Lora by altering layer's weights instead of adding more calculations in forward()

This commit is contained in:
AUTOMATIC 2023-03-25 23:06:33 +03:00
parent 69eb2a9ee8
commit 80b26d2a69
2 changed files with 66 additions and 18 deletions

View File

@ -131,7 +131,7 @@ def load_lora(name, filename):
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.device, dtype=devices.dtype)
module.to(device=devices.cpu, dtype=devices.dtype)
if lora_key == "lora_up.weight":
lora_module.up = module
@ -177,29 +177,69 @@ def load_loras(names, multipliers=None):
loaded_loras.append(lora)
def lora_forward(module, input, res):
input = devices.cond_cast_unet(input)
if len(loaded_loras) == 0:
return res
def lora_apply_weights(self: torch.nn.Conv2d | torch.nn.Linear):
"""
Applies the currently selected set of Loras to the weight of torch layer self.
If weights already have this particular set of loras applied, does nothing.
If not, restores orginal weights from backup and alters weights according to loras.
"""
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None:
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
else:
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
current_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
return res
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lora_weights_backup = weights_backup
if current_names != wanted_names:
if weights_backup is not None:
self.weight.copy_(weights_backup)
lora_layer_name = getattr(self, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is None:
continue
with torch.no_grad():
up = module.up.weight.to(self.weight.device, dtype=self.weight.dtype)
down = module.down.weight.to(self.weight.device, dtype=self.weight.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
updown = up @ down
self.weight += updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
setattr(self, "lora_current_names", wanted_names)
def lora_Linear_forward(self, input):
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
lora_apply_weights(self)
return torch.nn.Linear_forward_before_lora(self, input)
def lora_Linear_load_state_dict(self: torch.nn.Linear, *args, **kwargs):
setattr(self, "lora_current_names", ())
setattr(self, "lora_weights_backup", None)
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input):
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
lora_apply_weights(self)
return torch.nn.Conv2d_forward_before_lora(self, input)
def lora_Conv2d_load_state_dict(self: torch.nn.Conv2d, *args, **kwargs):
setattr(self, "lora_current_names", ())
setattr(self, "lora_weights_backup", None)
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras():

View File

@ -9,7 +9,9 @@ from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
def before_ui():
@ -20,11 +22,19 @@ def before_ui():
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
torch.nn.Linear.forward = lora.lora_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
@ -33,6 +43,4 @@ script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
}))