add CFG denoiser implementation for DDIM, PLMS and UniPC (this is the commit when you can run both old and new implementations to compare them)

This commit is contained in:
AUTOMATIC1111 2023-08-08 19:20:11 +03:00
parent 2d8e4a6544
commit 8285a149d8
6 changed files with 456 additions and 173 deletions

View File

@ -1,4 +1,4 @@
from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared
from modules import sd_samplers_compvis, sd_samplers_kdiffusion, sd_samplers_timesteps, shared
# imports for functions that previously were here and are used by other modules
from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401
@ -6,6 +6,7 @@ from modules.sd_samplers_common import samples_to_image_grid, sample_to_image #
all_samplers = [
*sd_samplers_kdiffusion.samplers_data_k_diffusion,
*sd_samplers_compvis.samplers_data_compvis,
*sd_samplers_timesteps.samplers_data_timesteps,
]
all_samplers_map = {x.name: x for x in all_samplers}

View File

@ -39,7 +39,7 @@ class CFGDenoiser(torch.nn.Module):
negative prompt.
"""
def __init__(self, model):
def __init__(self, model, sampler):
super().__init__()
self.inner_model = model
self.mask = None
@ -48,6 +48,7 @@ class CFGDenoiser(torch.nn.Module):
self.step = 0
self.image_cfg_scale = None
self.padded_cond_uncond = False
self.sampler = sampler
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
@ -65,6 +66,9 @@ class CFGDenoiser(torch.nn.Module):
return denoised
def get_pred_x0(self, x_in, x_out, sigma):
return x_out
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@ -78,6 +82,9 @@ class CFGDenoiser(torch.nn.Module):
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
if self.mask is not None:
x = self.init_latent * self.mask + self.nmask * x
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
@ -170,11 +177,6 @@ class CFGDenoiser(torch.nn.Module):
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
if is_edit_model:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
elif skip_uncond:
@ -182,8 +184,16 @@ class CFGDenoiser(torch.nn.Module):
else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
if opts.live_preview_content == "Prompt":
preview = self.sampler.last_latent
elif opts.live_preview_content == "Negative prompt":
preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma)
else:
preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma)
sd_samplers_common.store_latent(preview)
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
cfg_after_cfg_callback(after_cfg_callback_params)
@ -192,27 +202,3 @@ class CFGDenoiser(torch.nn.Module):
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return devices.randn_like(x)

View File

@ -1,9 +1,11 @@
from collections import namedtuple
import inspect
from collections import namedtuple, deque
import numpy as np
import torch
from PIL import Image
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
from modules.shared import opts, state
import k_diffusion.sampling
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@ -127,3 +129,139 @@ def replace_torchsde_browinan():
replace_torchsde_browinan()
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return devices.randn_like(x)
class Sampler:
def __init__(self, funcname):
self.funcname = funcname
self.func = funcname
self.extra_params = []
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config = None # set by the function calling the constructor
self.last_latent = None
self.s_min_uncond = None
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.eta_option_field = 'eta_ancestral'
self.eta_infotext_field = 'Eta'
self.conditioning_key = shared.sd_model.model.conditioning_key
self.model_wrap = None
self.model_wrap_cfg = None
def callback_state(self, d):
step = d['i']
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p) -> dict:
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != 1.0:
p.extra_generation_params[self.eta_infotext_field] = self.eta
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
if s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)

View File

@ -4,8 +4,7 @@ import inspect
import k_diffusion.sampling
from modules import devices, sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
from modules.processing import StableDiffusionProcessing
from modules.shared import opts, state
from modules.shared import opts
import modules.shared as shared
samplers_k_diffusion = [
@ -54,133 +53,17 @@ k_diffusion_scheduler = {
}
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return devices.randn_like(x)
class KDiffusionSampler:
class KDiffusionSampler(sd_samplers_common.Sampler):
def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
super().__init__(funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = sd_samplers_cfg_denoiser.CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config = None # set by the function calling the constructor
self.last_latent = None
self.s_min_uncond = None
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
# NOTE: These are also defined in the StableDiffusionProcessing class.
# They should have been here to begin with but we're going to
# leave that class __init__ signature alone.
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
sd_samplers_common.store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise sd_samplers_common.InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except sd_samplers_common.InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p: StableDiffusionProcessing):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != 1.0:
p.extra_generation_params["Eta"] = self.eta
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
if s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.model_wrap_cfg = sd_samplers_cfg_denoiser.CFGDenoiser(self.model_wrap, self)
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
@ -232,22 +115,12 @@ class KDiffusionSampler:
return sigmas
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
@ -296,12 +169,14 @@ class KDiffusionSampler:
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'n' in parameters:
extra_params_kwargs['n'] = steps
if 'sigma_min' in parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in parameters:
extra_params_kwargs['n'] = steps
else:
if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigmas
if self.config.options.get('brownian_noise', False):
@ -322,3 +197,4 @@ class KDiffusionSampler:
return samples

View File

@ -0,0 +1,147 @@
import torch
import inspect
from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl
from modules.sd_samplers_cfg_denoiser import CFGDenoiser
from modules.shared import opts
import modules.shared as shared
samplers_timesteps = [
('k_DDIM', sd_samplers_timesteps_impl.ddim, ['k_ddim'], {}),
('k_PLMS', sd_samplers_timesteps_impl.plms, ['k_plms'], {}),
('k_UniPC', sd_samplers_timesteps_impl.unipc, ['k_unipc'], {}),
]
samplers_data_timesteps = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_timesteps
]
class CompVisTimestepsDenoiser(torch.nn.Module):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.inner_model = model
def forward(self, input, timesteps, **kwargs):
return self.inner_model.apply_model(input, timesteps, **kwargs)
class CompVisTimestepsVDenoiser(torch.nn.Module):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.inner_model = model
def predict_eps_from_z_and_v(self, x_t, t, v):
return self.inner_model.sqrt_alphas_cumprod[t.to(torch.int), None, None, None] * v + self.inner_model.sqrt_one_minus_alphas_cumprod[t.to(torch.int), None, None, None] * x_t
def forward(self, input, timesteps, **kwargs):
model_output = self.inner_model.apply_model(input, timesteps, **kwargs)
e_t = self.predict_eps_from_z_and_v(input, timesteps, model_output)
return e_t
class CFGDenoiserTimesteps(CFGDenoiser):
def __init__(self, model, sampler):
super().__init__(model, sampler)
self.alphas = model.inner_model.alphas_cumprod
def get_pred_x0(self, x_in, x_out, sigma):
ts = int(sigma.item())
s_in = x_in.new_ones([x_in.shape[0]])
a_t = self.alphas[ts].item() * s_in
sqrt_one_minus_at = (1 - a_t).sqrt()
pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt()
return pred_x0
class CompVisSampler(sd_samplers_common.Sampler):
def __init__(self, funcname, sd_model):
super().__init__(funcname)
self.eta_option_field = 'eta_ddim'
self.eta_infotext_field = 'Eta DDIM'
denoiser = CompVisTimestepsVDenoiser if sd_model.parameterization == "v" else CompVisTimestepsDenoiser
self.model_wrap = denoiser(sd_model)
self.model_wrap_cfg = CFGDenoiserTimesteps(self.model_wrap, self)
def get_timesteps(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999)
return timesteps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
timesteps = self.get_timesteps(p, steps)
timesteps_sched = timesteps[:t_enc]
alphas_cumprod = shared.sd_model.alphas_cumprod
sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]])
sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]])
xi = x * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'timesteps' in parameters:
extra_params_kwargs['timesteps'] = timesteps_sched
if 'is_img2img' in parameters:
extra_params_kwargs['is_img2img'] = True
self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps
timesteps = self.get_timesteps(p, steps)
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'timesteps' in parameters:
extra_params_kwargs['timesteps'] = timesteps
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples

View File

@ -0,0 +1,135 @@
import torch
import tqdm
import k_diffusion.sampling
import numpy as np
from modules import shared
from modules.models.diffusion.uni_pc import uni_pc
@torch.no_grad()
def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in tqdm.trange(len(timesteps) - 1, disable=disable):
index = len(timesteps) - 1 - i
e_t = model(x, timesteps[index].item() * s_in, **extra_args)
a_t = alphas[index].item() * s_in
a_prev = alphas_prev[index].item() * s_in
sigma_t = sigmas[index].item() * s_in
sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_in
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t
noise = sigma_t * k_diffusion.sampling.torch.randn_like(x)
x = a_prev.sqrt() * pred_x0 + dir_xt + noise
if callback is not None:
callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0})
return x
@torch.no_grad()
def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_eps = []
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = alphas[index].item() * s_in
a_prev = alphas_prev[index].item() * s_in
sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_in
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
# direction pointing to x_t
dir_xt = (1. - a_prev).sqrt() * e_t
x_prev = a_prev.sqrt() * pred_x0 + dir_xt
return x_prev, pred_x0
for i in tqdm.trange(len(timesteps) - 1, disable=disable):
index = len(timesteps) - 1 - i
ts = timesteps[index].item() * s_in
t_next = timesteps[max(index - 1, 0)].item() * s_in
e_t = model(x, ts, **extra_args)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = model(x_prev, t_next, **extra_args)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
else:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
x = x_prev
if callback is not None:
callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0})
return x
class UniPCCFG(uni_pc.UniPC):
def __init__(self, cfg_model, extra_args, callback, *args, **kwargs):
super().__init__(None, *args, **kwargs)
def after_update(x, model_x):
callback({'x': x, 'i': self.index, 'sigma': 0, 'sigma_hat': 0, 'denoised': model_x})
self.index += 1
self.cfg_model = cfg_model
self.extra_args = extra_args
self.callback = callback
self.index = 0
self.after_update = after_update
def get_model_input_time(self, t_continuous):
return (t_continuous - 1. / self.noise_schedule.total_N) * 1000.
def model(self, x, t):
t_input = self.get_model_input_time(t)
res = self.cfg_model(x, t_input, **self.extra_args)
return res
def unipc(model, x, timesteps, extra_args=None, callback=None, disable=None, is_img2img=False):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
ns = uni_pc.NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
t_start = timesteps[-1] / 1000 + 1 / 1000 if is_img2img else None # this is likely off by a bit - if someone wants to fix it please by all means
unipc_sampler = UniPCCFG(model, extra_args, callback, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant)
x = unipc_sampler.sample(x, steps=len(timesteps), t_start=t_start, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
return x